Supporting Information

Advances and Industrialization of LiFePO₄ Cathodes in Electric

Vehicles: Challenges, Innovations, and Future Directions

Yongda Guo,^a Qifu Zhang,^a Junzheng Wei,^a Yating Hu,^{*a} Ximeng Liu,^{*b,c} Shaomin Huang^{*d} and Chunlei Pang^c

Contents:

Figures

Tables

References

Figures

Fig. S1. (a)Total number of patents filed and granted worldwide for LiFePO₄ materials each year from 2019 to 2024; (b)Total number of patents filed and granted for LiFePO₄ materials in China, the USA, Japan, Korea, and Europe from 2019 to 2024. (data from Google patents: <u>https://patents.google.com/</u>)

Fig. S2. Schematic diagram of regeneration and transformation of functional materials of LFP(LiFePO₄)batteries.^[1] Copyright 2022 Royal Society of Chemistry.

Tables

		Cells	Battery						
Cell chemistry	Producer	Voltage (V)	Energy density (Wh kg ⁻¹)	Energy (kWh)	Range (km)	EV model			
	LFP								
LFP/C	CATL	3.2	125 62.5		634	Tesla Model 3(2025)			
LFP/C	BYD	3.2	140	48	420	BYD Qin PLUS EV (2025)			
LFP/C	BYD	3.2	\	73.6	700	Xiaomi SU7 EV (2024)			
LFP/C	Ningde E-con Power System Co., Ltd	3.2	140	49	415	MG4 EV (2023)			
NMC									
NMC/C	SAIC-CATL	3.7	١	52.8	425	D.4 X Smart Pure Edition (2025)			
NMC/C	CATL	3.7	255	101	800	Xiaomi SU7 MAX (2024)			
NCA									
NCA/C	Panasonic	3.66	254	100	100 715 Tesla Moo S (2023				
NCA/C	Panasonic 3.66		243	100	700	Tesla Model X (2023)			
SIB									
SIB/C	CATL	\	146.05	14.07	170	Chery QQ IceCream (2024)			

Table S1. Various LIB battery for EVs.

LPF: LiFePO₄, NMC: LiNi_xMn_yCo_{1-x-y}O₂, NCA: LiNi_{0.8}Co_xAl_{0.2-x}O₂, SIB: Sodium-ion battery. C: graphite, Date from PCauto (<u>https://www.pcauto.com.cn/</u>)

Table S2.	Synthesis	of new	batteries	or f	functional	materials	from	cathode	materials	of u	ised LF	Р
batteries.[1-3]											

Application	Method	Application Scenario					
	Regeneration to New Battery	Initial capacity of 163.2 mA h g^{-1} at the rate of 0.1 C.					
	by High temperature solid-	Capacity retention of 97.08% at a rate of 0.5 C after					
	state reaction	100 cycles.					
Decomposed I FD		Discharge capacity of 136 mA h g ⁻¹ at the rate of 0.1					
Regenerated LFP	Acid leaching and	С.					
cathode material	hydrothermal synthesis	Capacity retention of 98.6 % at a rate of 1C after 300					
		cycles.					
	Lithium iodide solution re-	Capacity of 145 mA h g-1 at the rate of 1C					
	lithiation	Capacity retention of 96% at 5C after 300 cycles.					
		Water treatment:					
Heavy metal		SLFP shows adsorption capacities of 44.28, 39.54,					
adsorbent	Direct useing	25.63, and 27.34 mg g $^{-1}$ for $Cu^{2+},$ $Pb^{2+},$ Cd^{2+} and $Zn^{2+},$					
		respectively.					
	Electrochemical recycling	Water Oxidation:					
$\operatorname{Fe}_2 \operatorname{O}_3 / \operatorname{CO}_3 (\operatorname{PO}_4)_2$	method and Fe films	Power conversion efficiencies for water oxidation at					
Photoanodes	deposition	0.13 % in 1 M NaOH.					
Catalysts for							
oxygen evolution	Wetness impregnation method	A low overpotential of 285 mV at 10 mA cm ⁻²					
reaction							

LFP: LiFePO₄, SLFP: Spent LiFePO₄.

References

- 1 Wang M., K. Liu, S. Dutta, D.S. Alessi, J. Rinklebe, Y.S. Ok, and D.C.W. Tsang, *Renewable and Sustainable Energy Reviews*, 2022, **163**, 112515.
- Gangaja B., S. Nair, and D. Santhanagopalan, ACS Sustainable Chemistry & Engineering, 2021, 9, 4711-4721.
- 3 Lin J., X. Zhang, E. Fan, R. Chen, F. Wu, and L. Li, *Energy Environ. Sci.*, 2023, 16, 745-791.