## **SUPPORTING INFORMATION**

## Efficient Ethane Production via SnCl<sub>4</sub> Lewis Acid-Enhanced CO<sub>2</sub> Electroreduction in a Flow Cell Electrolyser

Sankeerthana Bellamkonda<sup>1,2\*</sup>, Ian Brewis<sup>1</sup>, Venkateswar Rao Gadela<sup>1</sup>, Rana Faisal Shahzad<sup>1</sup>, Mohamed Mamlouk<sup>2</sup>, Shahid Rasul<sup>1\*</sup>

<sup>1</sup>School of Engineering and Environment, Northumbria University, Newcastle upon Tyne, United Kingdom

<sup>2</sup>School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom

Synthesis of Cu3Sn: The Cu3Sn GDE has been synthesised by a facile in-situ electrochemical spontaneous precipitation (ESP) method in 25 min. As shown in Figure S2, the synthesis process starts from injecting the acidified Sn<sup>4+</sup> solution (0.05 M SnCl<sub>4</sub>.5H<sub>2</sub>O and 0.4 M citric acid, pH = 2.0) into a container until immersing the two electrodes, a Cu<sub>2</sub>O-binded GDL and pure In foil, which are externally connected by a 2  $\Omega$  cable.



Figure S1. Experiment set-up schematic and process for 25 min ESP.

E-mail address: <u>sankeerthana999@gmail.com</u> (Sankeerthana B.); and shahid.rasul@northumbria.ac.uk (Shahid Rasul).

<sup>\*</sup>*Corresponding author; Tel.:* +91 9445435743; +44 7471042866;



Figure S2. 3D drawing of the  $CO_2$  electrolyser and its components we used in this study.



**Figure S3.** FEs of  $CO_2$  reduced various products as a function of potential for the  $Cu_2O$  and  $Cu_3Sn$  GDEs during electrochemical reduction using flow cell electrolyser



Figure S4. SEM and EDAX images of post CO<sub>2</sub>-electrolysed CTC-65 GDE.



Figure S5. Elemental mapping of post-CO<sub>2</sub> electrolysed CTC-65 GDE.



**Figure S6.** XRD spectra of GDL, Cu<sub>2</sub>O GDE, Cu<sub>3</sub>Sn GDE and post CO<sub>2</sub> electrolysed CTC-65 GDE.



Figure S7. Raman spectrum of post CO<sub>2</sub> electrolysed CTC-65

Computational details on Density Functional Theory (DFT)-type calculations are performed for bulk and slab unit cells. Below we report the unit cell relaxed geometries and k-grid and plane-wave energy cut-offs used for each cell. All provided geometries are in the following format.

Atom types, number of atoms, atom positions, according to QUANTUM ESPRESSO standard input.

1. CO and K adsorbed CTC-65 relaxed geometry – calculated with a 6x6x1 gamma-centered k-grid and a 400 eV plane-wave energy cut-off:

| Cu | 10.27391 | 7.149756 | 4.223283 |
|----|----------|----------|----------|
| Cu | 10.27391 | 4.18406  | 18.26513 |
| Cu | 10.27391 | 1.225918 | 2.090626 |
| Cu | 10.27391 | 8.634781 | 18.27262 |
| Cu | 10.27391 | 5.677143 | 2.088991 |
| Cu | 10.27391 | 2.703721 | 4.202593 |
| Cu | 1.282939 | 7.895676 | 2.093938 |
| Cu | 1.275522 | 4.926614 | 4.204834 |
| Cu | 1.284088 | 1.961471 | 18.26095 |
| Cu | 1.277731 | 0.47698  | 4.207403 |
| Cu | 1.28683  | 6.41052  | 18.26134 |
| Cu | 1.285606 | 3.446337 | 2.082031 |
| Cu | 2.534522 | 2.700174 | 4.195092 |
| Cu | 2.566275 | 5.660248 | 2.080421 |
| Cu | 2.569649 | 8.628428 | 18.25894 |
| Cu | 2.554307 | 7.146759 | 4.204055 |
| Cu | 2.56671  | 4.182125 | 18.24201 |
| Cu | 2.570439 | 1.218011 | 2.077651 |
| Cu | 3.85605  | 3.432221 | 2.068884 |
| Cu | 3.851974 | 6.404802 | 18.25511 |
| Cu | 3.833618 | 0.446238 | 4.194408 |
| Cu | 3.832337 | 4.949705 | 4.190887 |
| Cu | 3.851843 | 7.881885 | 2.08538  |
| Cu | 3.85187  | 1.951731 | 18.24142 |
| Cu | 5.136952 | 1.21464  | 2.070055 |
| Cu | 5.136953 | 4.176139 | 18.24048 |
| Cu | 5.136953 | 7.144073 | 4.199775 |
| Cu | 5.136953 | 5.649895 | 2.073959 |
| Cu | 5.136952 | 8.621686 | 18.25141 |
| Cu | 6.422036 | 1.951731 | 18.24142 |
| Cu | 6.441569 | 4.949705 | 4.190886 |
| Cu | 6.422062 | 7.881885 | 2.085378 |
| Cu | 6.417855 | 3.432221 | 2.068884 |
| Cu | 6.421932 | 6.404802 | 18.25511 |

| Cu | 6.440287 | 0.446238 | 4.194407 |
|----|----------|----------|----------|
| Cu | 7.704257 | 8.628428 | 18.25894 |
| Cu | 7.739383 | 2.700173 | 4.195088 |
| Cu | 7.70763  | 5.660247 | 2.08042  |
| Cu | 7.703466 | 1.21801  | 2.077651 |
| Cu | 7.707194 | 4.182125 | 18.24201 |
| Cu | 7.719598 | 7.146759 | 4.20405  |
| Cu | 8.996174 | 0.47698  | 4.207403 |
| Cu | 8.988299 | 3.446337 | 2.082031 |
| Cu | 8.987074 | 6.41052  | 18.26134 |
| Cu | 8.998383 | 4.926615 | 4.204834 |
| Cu | 8.990967 | 7.895676 | 2.093936 |
| Cu | 8.989817 | 1.961471 | 18.26095 |
| Sn | 5.136952 | 2.700019 | 4.938216 |
| С  | 5.136952 | 4.924383 | 5.852792 |
| 0  | 5.136952 | 4.924383 | 6.950279 |
| Cl | 4.09963  | 3.767116 | 5.298744 |
| Cl | 5.948933 | 3.767116 | 5.298744 |
| Κ  | 5.1369   | 4.9243   | 8.9564   |
|    |          |          |          |

2. CO adsorbed Cu – relaxed geometry -  $Pd/Fe_2O_3$  relaxed geometry - calculated with a 6x6x1 gamma-centered k-grid and a 400 eV plane-wave energy cut-off:

| Cu | 10.27391 | 7.149756 | 4.223283 |
|----|----------|----------|----------|
| Cu | 10.27391 | 4.18406  | 18.26513 |
| Cu | 10.27391 | 1.225918 | 2.090626 |
| Cu | 10.27391 | 8.634781 | 18.27262 |
| Cu | 10.27391 | 5.677143 | 2.088991 |
| Cu | 10.27391 | 2.703721 | 4.202593 |
| Cu | 1.282939 | 7.895676 | 2.093938 |
| Cu | 1.275522 | 4.926614 | 4.204834 |
| Cu | 1.284088 | 1.961471 | 18.26095 |
| Cu | 1.277731 | 0.47698  | 4.207403 |
| Cu | 1.28683  | 6.41052  | 18.26134 |
| Cu | 1.285606 | 3.446337 | 2.082031 |
| Cu | 2.534522 | 2.700174 | 4.195092 |
| Cu | 2.566275 | 5.660248 | 2.080421 |
| Cu | 2.569649 | 8.628428 | 18.25894 |
| Cu | 2.554307 | 7.146759 | 4.204055 |
| Cu | 2.56671  | 4.182125 | 18.24201 |
| Cu | 2.570439 | 1.218011 | 2.077651 |
| Cu | 3.85605  | 3.432221 | 2.068884 |
| Cu | 3.851974 | 6.404802 | 18.25511 |
| Cu | 3.833618 | 0.446238 | 4.194408 |
| Cu | 3.832337 | 4.949705 | 4.190887 |

| Cu | 3.851843 | 7.881885 | 2.08538  |
|----|----------|----------|----------|
| Cu | 3.85187  | 1.951731 | 18.24142 |
| Cu | 5.136952 | 1.21464  | 2.070055 |
| Cu | 5.136953 | 4.176139 | 18.24048 |
| Cu | 5.136953 | 7.144073 | 4.199775 |
| Cu | 5.136953 | 5.649895 | 2.073959 |
| Cu | 5.136952 | 8.621686 | 18.25141 |
| Cu | 6.422036 | 1.951731 | 18.24142 |
| Cu | 6.441569 | 4.949705 | 4.190886 |
| Cu | 6.422062 | 7.881885 | 2.085378 |
| Cu | 6.417855 | 3.432221 | 2.068884 |
| Cu | 6.421932 | 6.404802 | 18.25511 |
| Cu | 6.440287 | 0.446238 | 4.194407 |
| Cu | 7.704257 | 8.628428 | 18.25894 |
| Cu | 7.739383 | 2.700173 | 4.195088 |
| Cu | 7.70763  | 5.660247 | 2.08042  |
| Cu | 7.703466 | 1.21801  | 2.077651 |
| Cu | 7.707194 | 4.182125 | 18.24201 |
| Cu | 7.719598 | 7.146759 | 4.20405  |
| Cu | 8.996174 | 0.47698  | 4.207403 |
| Cu | 8.988299 | 3.446337 | 2.082031 |
| Cu | 8.987074 | 6.41052  | 18.26134 |
| Cu | 8.998383 | 4.926615 | 4.204834 |
| Cu | 8.990967 | 7.895676 | 2.093936 |
| Cu | 8.989817 | 1.961471 | 18.26095 |
| С  | 5.136952 | 4.924383 | 5.852792 |
| 0  | 5.136952 | 4.924383 | 6.950279 |

Figure S8 illustrates the electronic dispersion along high-symmetry directions in the Brillouin zone (Gamma, X, M, R), highlighting the evolution of electronic states with the addition of Sn and SnCl<sub>2</sub> in bulk Cu crystal structure. The band structures of bulk Cu, Cu with Sn, and Cu with SnCl<sub>2</sub> highlights the significant impact of Sn and Cl on the electronic dispersion, directly reflecting changes in the underlying crystal structure. In pure Cu, the metallic band structure exhibits high dispersion along all high-symmetry directions, indicating isotropic electron transport and strong metallic bonding. Upon adding Sn onto surface of the Cu lattice, new localized flat bands appear near the Fermi level, particularly along the M and R directions, suggesting a reduction in isotropy and the introduction of states associated with d-orbitals of Sn. These localized states are linked to enhanced intermediate stabilization due to the crystal field effect of Sn. The inclusion of SnCl<sub>2</sub> further modifies the electronic structure, as evident from the increased density of states near the Fermi level and the presence of additional flat bands. The interaction between p-orbitals of Cl and Sn coordination in the Cu lattice introduces

asymmetry in the band dispersion, particularly along the Gamma-X and M-R directions, reflecting the anisotropic electronic environment created by the  $SnCl_2$  unit. This anisotropy and the directional nature of band modifications emphasize the role of Sn and Cl in tailoring the electronic structure of CuSnCl, enabling efficient charge transfer and selective CO<sub>2</sub> reduction pathways.



**Figure S8.** Band structures of bulk Cu slab, Cu with a Sn atom, and Cu with SnCl<sub>2</sub> incorporated into the lattice.