Supporting Information

Enhanced Thermoelectric Properties in Bilayer Graphdiyne

through Twist Angle and Pressure

Qiaohan Liu, ^a Dapeng Wu^{*,a} and Jingang Wang ^{*,a}

College of Science, Liaoning Petrochemical University, Fushun 113001, China

Fig S1: (a) Schematic diagram of the structure of monolayer graphdyne (GDY) (where λ represents the lattice constant); (b) The band structure and projected density of states diagram in GDY.

Fig S2: Schematic diagram of the 21.79°_TBGDY structure under the compressive stress in the out-of-plane (Z direction). And the line chart of the change in interlayer spacing.

Fig S3: Schematic diagram of the 21.79°_TBGDY structure under compressive and tensile stresses in the in-plane direction (XY direction). And the line chart of the change in interlayer spacing.

Fig S4: The band structure and projected density of states diagrams of the 21.79° _TBGDY structure in the out-of-plane direction (Z direction): (a) Z_-5 GPa; (b) Z_-10 GPa; (c) Z_-15 GPa; (d) Z_-18 GPa.

Fig S5: The band structure and projected density of states diagrams of the 21.79°_TBGDY structure under the compressive stress in the in-plane direction (XY direction): (a) XY_-5 GPa; (b) XY_-9 GPa; (c) XY_+5 GPa; (d) XY_+10 GPa; (e) XY_+15 GPa; (f) XY_+17 GPa.

Fig S6: Color plots of the effective masses of holes (upper part) and electrons (lower part) within the first Brillouin zone of the 21.79°_TBGDY structure under stresses in different directions. (a) 21.79°_TBGDY without external stress; (b) XY_-9 GPa; (c)

XY_17 GPa; (d) Z_-8 GPa; (e) Z_-17 GPa. (f) Schematic diagram of the effective mass of 21.79°_TBGDY with stress applied in the in-plane direction (XY direction); (g) Schematic diagram of the effective mass of 21.79° _TBGDY with stress applied in the out-of-plane direction (Z direction); (h) Schematic diagram of the carrier concentration of 21.79°_TBGDY with stress applied in the in-plane direction (XY direction) at 300K; (i) Schematic diagram of the carrier concentration of 21.79° _TBGDY with stress applied in the out-of-plane direction (Z direction) at 300K;

Fig S7: Intermolecular bonding characteristics of different structures: (a) Bilayer; (b) 21.79°_TBGDY; (c) Z_-5 GPa; (d) Z_-10 GPa; (e) Z_-15 GPa; (f) Z_-18 GPa.

Fig S8: Intermolecular bonding characteristics of different structures: (a) XY_-5 GPa; (b) XY_-9 GPa; (c) XY_+5 GPa; (d) XY_+10 GPa; (e) XY_+15 GPa; (f) XY_+17 GPa.

Fig S9: Electron localization functions of different structures: (a) Bilayer; (b) 21.79° _TBGDY; (c) Z_-5 GPa; (d) Z_-10 GPa; (e) Z_-15 GPa; (f) Z_-18 GPa; (g) XY_-5 GPa; (h) XY_-9 GPa; (i) XY_+5 GPa; (j) XY_+10 GPa; (k) XY_+15 GPa; (l) XY_+17 GPa.

Fig S10: The chemical potential-dependent power factor at different temperatures: (a) Bilayer; (b) 21.79°_TBGDY; (c) Z_-5 GPa; (d) Z_-10 GPa; (e) Z_-15 GPa; (f) Z_-18 GPa.

Fig S11: The power factor dependent on the chemical potential at different temperatures: (a) XY_-5 GPa; (b) XY_-9 GPa; (c) XY_+5 GPa; (d) XY_+10 GPa; (e) XY_+15 GPa; (f) XY_+17 GPa.

Fig S12: The chemical potential-dependent (a) Seebeck coefficient; (b) the ratios of electrical conductivity to the relaxation time (σ/τ) ; (c) the ratios of electronic thermal conductivity to the relaxation time $(\kappa e/\tau)$ of the Bilayer structure at different temperatures (Two calculation methods: The upper one is the VASP + BoltzTrap method; the lower one is the VASP + VASPKIT method).

Fig S13: The chemical potential-dependent (a) Seebeck coefficient; (b) the ratios of electrical conductivity to the relaxation time (σ/τ) ; (c) the ratios of electronic thermal conductivity to the relaxation time $(\kappa e/\tau)$; (d) the ratios of power factor to the relaxation time (PF/τ) of Z_-5 GPa at different temperatures.

Fig S14: The chemical potential-dependent (a) Seebeck coefficient; (b) the ratios of electrical conductivity to the relaxation time (σ/τ) ; (c) the ratios of electronic thermal conductivity to the relaxation time $(\kappa e/\tau)$; (d) the ratios of power factor to the relaxation time (PF/τ) of Z_-10 GPa at different temperatures.

Fig S15: The chemical potential-dependent (a) Seebeck coefficient; (b) the ratios of electrical conductivity to the relaxation time (σ/τ) ; (c) the ratios of electronic thermal conductivity to the relaxation time $(\kappa e/\tau)$; (d) the ratios of power factor to the relaxation time (PF/τ) of Z_-15 GPa at different temperatures.

Fig S16: The chemical potential-dependent (a) Seebeck coefficient; (b) the ratios of electrical conductivity to the relaxation time (σ/τ) ; (c) the ratios of electronic thermal conductivity to the relaxation time $(\kappa e/\tau)$; (d) the ratios of power factor to the relaxation time (PF/τ) of Z_-18 GPa at different temperatures.

Fig S17: The chemical potential-dependent (a) Seebeck coefficient; (b) the ratios of electrical conductivity to the relaxation time (σ/τ) ; (c) the ratios of electronic thermal conductivity to the relaxation time $(\kappa e/\tau)$; (d) the ratios of power factor to the relaxation time (PF/τ) of XY_-5 GPa at different temperatures.

Fig S18: The chemical potential-dependent (a) Seebeck coefficient; (b) the ratios of electrical conductivity to the relaxation time (σ/τ) ; (c) the ratios of electronic thermal conductivity to the relaxation time ($\kappa e/\tau$); (d) the ratios of power factor to the relaxation time (PF/τ) of XY_-9 GPa at different temperatures.

Fig S19: The chemical potential-dependent (a) Seebeck coefficient; (b) the ratios of electrical conductivity to the relaxation time (σ/τ) ; (c) the ratios of electronic thermal conductivity to the relaxation time $(\kappa e/\tau)$; (d) the ratios of power factor to the relaxation time (PF/τ) of XY_+5 GPa at different temperatures.

Fig S20: The chemical potential-dependent (a) Seebeck coefficient; (b) the ratios of electrical conductivity to the relaxation time (σ/τ) ; (c) the ratios of electronic thermal conductivity to the relaxation time $(\kappa e/\tau)$; (d) the ratios of power factor to the relaxation time (PF/τ) of XY_+10 GPa at different temperatures.

Fig S21: The chemical potential-dependent (a) Seebeck coefficient; (b) the ratios of electrical conductivity to the relaxation time (σ/τ) ; (c) the ratios of electronic thermal conductivity to the relaxation time $(\kappa e/\tau)$; (d) the ratios of power factor to the relaxation time (PF/τ) of XY_+15 GPa at different temperatures.

Fig S22: The chemical potential-dependent (a) Seebeck coefficient; (b) the ratios of electrical conductivity to the relaxation time (σ/τ) ; (c) the ratios of electronic thermal conductivity to the relaxation time $(\kappa e/\tau)$; (d) the ratios of power factor to the relaxation time (PF/τ) of XY_+17 GPa at different temperatures.

Fig S23: The zoomed-in view for both Bilayer and 21.79°_TBGDY at low frequency, where the blue line represents 21.79°_TBGDY and the red line represents Bilayer.

Fig S24: (a) Comparison diagram of the ratios of electrical conductivity to the relaxation time (σ/τ) of 21.79°_TBGDY and (b) Z_-5 GPa calculated. (Two calculation methods: The upper one is the VASP + BoltzTrap method; the lower one is the VASP

+ VASPKIT method).

Fig S25: (a) Schematic diagram of the carrier concentration of 21.79° _TBGDY when stress is applied in the in-plane direction (XY direction) at different temperatures (100 ~ 1000K); (b) Schematic diagram of the carrier concentration of 21.79° _TBGDY when stress is applied in the out-of-plane direction (Z direction) at different temperatures (100 ~ 1000K).