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Note 1 Elastic constants of GaAs/GaP and GaAs/AlAs superlattices.

GaAs/GaP and GaAs/AlAs exhibit identical forms of the elastic matrix:

C'1 1 Cl 2

C

—_
—_

superlattice

Elastic constants (GPa) of GaAs/GaP are as follows:

107.3366 46.2395  43.4099
107.3366 43.4099
106.8399

55.7396

CGaAs/GaP =

Elastic constants (GPa) of GaAs/AlAs are as follows:

101.9251 46.0447
101.9251

46.2020
46.2020
101.7941
50.7471

CGaAs/AlAs =
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. S1 Projected density of states of (a) GaAs/GaP and (b) GaAs/AlAs superlattices.
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Fig. S2 AIMD results of strained (a) GaAs/GaP and (b) GaAs/AlAs at 300 K. Insets are side and top

views of the structures after simulations.
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Fig. S3 Orbital distribution of the CBM and VBM for (a) GaAs/GaP and (b) GaAs/AlAs under

various strains.
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Fig. S4 Dephasing function of (a) GaAs/GaP and (b) GaAs/AlAs under different strains, with the

fitted decoherence times.
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Fig. S5 Optimized structures of (a) GaAs/GaAs,P1.x and (b) GaAs/Ga,Ali.xAs superlattices.
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Fig. S6 AIMD results of (a) GaAs/GaAsxPi.. and (b) GaAs/Ga,AlixAs at 300 K. Insets are side and

top views of the structures after simulations.
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Fig. S7 Phonon dispersion spectra of (a) GaAs/GaAs.P1.x and (b) GaAs/Ga,AliAs.
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Fig. S8 Projected band structures of (a) GaAs/GaAs.P1.x and (b) GaAs/Ga.AlixAs with the HSE06

method. Dashed lines represent the Fermi levels.
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Fig. S9 (a) Optimized structures and (b) projected band structures for different configurations of

GaAs/GaAso2Pos. Dashed lines represent the Fermi levels.
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Fig. S10 Light absorption spectra of (a) GaAs/GaAsxPi. and (b) GaAs/Ga.Ali.xAs along the XX

and ZZ directions.
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Fig. S11 Dephasing function of (a) GaAs/GaAs.Pix and (b) GaAs/Ga,Ali..As, with the fitted

decoherence times.
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Fig. S12 Orbital distribution of the CBM and VBM for (a) GaAs/GaAs.Pix and (b)
GaAs/GaxAl;-As.
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Fig. S13 Projected band structures of (a) GaAs/GaP and (b) GaAs/AlAs with the PBE and HSE06

methods. Dashed lines represent the Fermi levels.
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