Electronic Supplementary Information (ESI)

Sodiation-driven amorphous Co-based species in slope-dominant hard carbon with ultralong cycling life for sodium-ion hybrid capacitors

Ziyang Jia^a, Yibo Wang ^a, Xi Chen^a, Lili Liu^a, Lijun Fu^a, Yuhui Chen^a, Xinhai Yuan^{a,*},

Xinbing Cheng^b, Faxing Wang^{b,*}, Yuping Wu^{a,b*}

^a School of Energy Science and Engineering, Nanjing Tech University, 211816 Nanjing, Jiangsu Province, China.

^b Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing 211189, China.

Correspondence to: Prof. Dr. Yuping Wu, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing 211189, China.

Email: wuyp@fudan.edu.cn or wuyp@seu.edu.cn; http://orcid.org/0000-0002-0833-1205.

Fig. S1. The SEM for (a) Co₃O₄, (b) T10-Co₃O₄, (c) T20-Co₃O₄, (d) T10-Co₃O₄@NC600, (e) T10-Co₃O₄@NC800, and (f) NC700.

Fig. S2. The first three laps CV plots at 0.1 mV s⁻¹ for (a) Co₃O₄, (b) T10-Co₃O₄, (c) T20-Co₃O₄, (d) T10-Co₃O₄@NC600, (e) T10-Co₃O₄@NC800, and (f) NC700.

Fig. S3. The CV plots at 0.1-1 mV s⁻¹ for (a) Co₃O₄, (b) T10-Co₃O₄, (c) T20-Co₃O₄, (d) T10-Co₃O₄@NC600, (e) T10-Co₃O₄@NC800, and (f) NC700.

Fig. S4. The rate performance (a) and cycling performance (b) of the T20-C $_{03}O_{4}$, T10-C $_{03}O_{4}$ @NC600, and T10-C $_{03}O_{4}$ @NC800 electrodes.

Fig. S5. GCD curves of (a) Co₃O₄, (b) T10-Co₃O₄, (c) T20-Co₃O₄, (d) T10-Co₃O₄@NC600, (e) T10-Co₃O₄@NC800, and (f) NC700.

Fig. S6. GCD curves of (a) Co_3O_4 , (b) T10- Co_3O_4 , (c) T20- Co_3O_4 , (d) T10- Co_3O_4 @NC600, (e) T10- Co_3O_4 @NC800, (f) T10- Co_3O_4 @NC700 and (g) NC700 electrodes for the respective 5th cycle at 0.1-10 A g⁻¹.

Fig. S7. Rate capability and coulombic efficiency of (a) Co_3O_4 , (b) T10- Co_3O_4 , (c) T20-C o_3O_4 , (d) T10- Co_3O_4 @NC600, (e) T10- Co_3O_4 @NC800, (e) T10- Co_3O_4 @NC700 and (g) NC700 electrodes at 0.1-10 A g⁻¹.

Fig. S8. (a) Rate capability and (b) cycling life of Co₃O₄@NC700 and T10-Co₃O₄@NC700.

Fig. S9. (a) GCD plots of the first cycle, and (b) Ex-situ XRD of T10-Co₃O₄@NC700 electrode at different potentials.

Fig. S10. GCD curves at 0.2 A g⁻¹ of T10-Co₃O₄@NC700//AC SIC.

SIC devices	Energy density (Wh/kg)	Power density (W/kg)	Capacitance retention/ cycles	Ref.
T-Nb ₂ O ₅ -C-	40	436	70%/2000	1
rGO/rGO//AC/rGO				
AC//Na-HC	35	1000	83%/5000	2
NiF ₂ //AC	35.1	500	73.6%/200	3
Cu _{1.8} Se/C-450//AC	65.8	81.4	75.3%/3000	4
CoSeO ₃ //AC	51	2000	72%/3000	5
MWTOG/AC	64.2	56.3	90%/10000	6
T10-Co ₃ O ₄ @NC700//AC	59-3.6	69-4145	50%/5000	This
				work

Table S1. A comparison for the performance of the T10-Co₃O₄@NC700//AC in this work with some representative SICs.

Supplementary References.

- Z. J. Bi, Y. Zhang, X. G. Li, Y. X. Liang, W. J. Ma, Z. Zhou and M. F. Zhu, *Electrochim. Acta*, 2022, **411**, 140070.
- 2. P. Jeżowski, A. Chojnacka, X. Pan and F. Béguin, *Electrochim. Acta*, 2021, 375, 137980.
- Y. F. Huang, X. D. Li, R. Ding, D. F. Ying, T. Yan, Y. X. Huang, C. N. Tan, X. J. Sun, P. Gao and E. H. Liu, *Electrochim. Acta*, 2020, **329**, 135138.
- X. Y. Shi, J. C. Yu, Q. N. Liu, L. Y. Shao, J. J. Cai and Z. P. Sun, Sustainable Mater. Technol., 2021, 28, e00275.
- M. S. Wang, A. M. Peng, J. X. Jiang, M. Zeng, Z. L. Yang, J. C. Chen, B. S. Guo, Z. Y. Ma, B. Yu and Y. N. Zhang, *Chem. Eng. J.*, 2022, 433, 134567.
- Z. Y. Le, F. Liu, P. Nie, X. R. Li, X. Y. Liu, Z. F. Bian, G. Chen, H. B. Wu and Y. F. Lu, ACS Nano, 2017, 11, 2952-2960.