Supporting information file

Vertically aligned 3D core-shell of CuO/ZnCO₂O₄ on flexible support for efficient and scalable electrochemical water splitting

Pooja K. Bhoj,^a Desta M. Ulisso,^a Jyotiprakash B. Yadav,^b Tukaram D. Dongale,^c Bhaskar R. Sathe,^d Hyojung Bae,^e Pratik Mane,^e Jun-Seok Ha,^e I-Wen Peter Chen,^f Jaeyeong Heo,^g Jia-Yaw Chang,^h and Anil Vithal Ghule^{a*}

^aGreen Nanotechnology Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004, India

^bUniversity Science Instrumentation Centre (USIC), Shivaji University, Kolhapur 416004, Maharashtra, India

^cSchool of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra 416004, India

^dDepartment of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, India

^eSchool of Chemical Engineering and Optoelectronics Convergence Research Center, Chonnam National University, Buk-gu, Gwangju, 61186, Republic of Korea

^fDepartment of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan

^gDepartment of Materials Science and Engineering and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, Republic of Korea

^hDepartment of Chemical Engineering, National Taiwan University for Science and Technology, Taipei City 106335, Taiwan

*Author for correspondence: Anil V. Ghule; avg_chem@unishivaji.ac.in

Fig. S1 (a-d) SEM images of CuO/ZnCo₂O₄@FSSM at different magnifications showing porous nanostructure.

Fig. S2 SEM and HR-TEM images of CuO, ZnCo2O4, and CuO/ZnCo2O4 at different magnifications showing the core-shell structure of CuO/ZnCo2O4 electrode.

Fig. S3 HR-TEM images of $CuO/ZnCo_2O_4$ at different magnifications showing the core-shell structure of $CuO/ZnCo_2O_4$ electrode.

Fig. S4 BET plots of CuO/ZnCo₂O₄ and the respective BJH plots (inset).

Fig. S5 Full XPS survey spectrum of CuO/ZnCo₂O₄

Fig. S6 Long-term stability test of CuO/ZnCo₂O₄@FSSM for 50 h at 10 mA cm⁻² current density.

Fig. S7 CP test of CuO@FSSM, ZnCo₂O₄@FSSM, and CuO/ZnCo₂O₄@FSSM at 50 mA cm⁻² current density.

Post-OER Analysis

Fig. S8 XRD of CuO/ZnCo₂O₄@FSSM after the long-term stability test@10 mA cm⁻² current density after 25 h.

Fig. S9 (a-b) SEM images obtained at different magnifications from CuO/ZnCo₂O₄@FSSM after the stability test (c) EDS spectrum of CuO/ZnCo₂O₄@FSSM after stability test.

Fig. S10 (a-c) After stability test TEM images of 3-D CuO/ZnCo₂O₄ core-shell network obtained at different magnifications (d-e) HR-TEM images of CuO/ZnCo₂O₄@FSSM core-shell network, (f) SAED pattern.

Fig. S11 Post OER XPS analysis of CuO/ZnCo₂O₄ (a) Zn 2p core spectra,(b) Co 2p core spectra, (c) Cu 2p core spectra, (d) O 1s core spectra.