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All density-functional theory (DFT) calculations were performed using the 

Gaussian 16 software package [1]. The molecular structure was visualized and all bond 

lengths and bond angles were measured by GaussView 6.0. Molecular orbitals were 

visualized by VMD [2]. All geometrical configurations were optimized using the M06-

2X [3] hybrid function and Grimme D3 dispersion correction (GD3) [4], and the Def2-

SVP [5] basis set was used for all atoms. Self-consistent calculations were performed 

using the M06-2X hybrid function and the Grimme D3 dispersion correction (GD3) 

and the Def2-TZVPP [6] basis set, with the addition of a diffusion function. The bond 

dissociation energy (BDE) is calculated in this paper using the following equation:

𝐵𝐷𝐸= 𝐸𝐴+ 𝐸𝐵 ‒ 𝐸𝐴𝐵

where EAB is the electronic energy of the complete structure before bond breaking, 

EA and EB are the electronic energies of the two radical fragments after bond breaking, 

respectively. In order to avoid wrongly incorporating the deformation energy of the 

fragments into the estimation of the bond strength, the two radical fragments are 

directly calculated by self-consistency without optimization.

In this paper, we use Multiwfn [7] to calculate the fuzzy bond order (FBO) [8] 

between F/O atoms and C radical of ether, the electrostatic potential (ESP) [9] of the C 

atom and the atomic dipole moment corrected Hirshfeld population atomic charge (AC) 
[10] of the C atom. NBO 7.0 [11] was used to derive the value of Second-order 

stabilization energy (E(2)) between the lone pair electrons orbitals of the O/F atoms and 

the orbitals of the C radical, the O/F lone pair electrons orbital population number.

In this work, we use 5 regression models, Partial Least Squares Regression (PLS), 

Gradient Boosting Regression (GBR), Gaussian Process Regression (GPR), Support 

Vector Regression (SVR), Kernel Ridge Regression (KRR), to predict the antioxidative 

property of ether-based electrolytes. Each model was trained individually. 35 % of the 

samples in the dataset were randomly selected as test set, while the remaining samples 
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were used as training set. Moreover, we conduct a cross-validation combined with 

gridsearch approach to train the regression model and optimize the hyper-parameters 

(By utilizing the class sklearn.model_selection, Grid-SearchCV from Scikit-learn 

Python library (ver. 3.11.3)). In each fold, a fresh model is instantiated according to the 

previously defined model type and hyper-parameter combination, and then this model 

is trained using the training data for the current fold. After obtaining the optimal hyper-

parameters, the model performance was assessed separately on the entire training set 

and the test set using these hyper-parameters. The detailed hyper-parameters used in 

this study can be found in Table S2.

Table S1 Optimized hyper-parameters of models used in this study (hyper-parameters not 

mentioned in the table are default values).

Model Hyper-parameter

Partial Least Squares Regression (PLS) n_components = 5

Gradient Boosting Regression (GBR)

learning_rate = 0.4

max_depth = 3

n_estimators = 100

Gaussian Process Regression (GPR) 
n_restarts_optimizer = 0

random_state = 0

Support Vector Regression (SVR)

kernel = rbf

C = 100

gamma = 0.1

epsilon = .1

Kernel Ridge Regression (KRR) kernel = poly



alpha = 0.5

coef0 = 4

gamma = 0.1

Table S2 The detailed description of 17 features and 2 target values

Table S3 The applicable situation of the five machine learning models



 Figure S1 Structural formulae of molecules involved in the analysis

Figure S2 Scatter plots of the variation of ΔBDEC1 with (a) FBOF-C1, (b) ΔFBOC1-O, (c) ΔPNC1, (d) 

BDEbefore, and (e) ΔACC1; (f) Scatter plot of the variation of ΔBDEC2 with ΔFBOC2-O.



Figure S3 (a) BDEbefore and FBOF-C1 of Methoxymethane (MM), Ethoxyethane (EE), Allyl ether 

(AE), and Dimethoxymethane (DMM) (from left to right); (b) ∆AC of C atoms of MM, EE, AE, 

DMM; (c) ∆PNO2 and ∆FBOC-O of MM, EE, AE, DMM; (d) ∆PNC1 and ∆FBOC-O of MM, EE, AE, 

DMM.

Note S1

In Figure S3, the BDEbefore gradually decreases with the variation of functional 

groups on the ether carbon from left to right. Thus, the stability of the C radical before 

substitution gradually increases with the variation. After substitution, the F atom and 

the C1 radical have the large FBO values, which indicates that F atom have a strong 

conjugation effect with C1 radical. ΔPNO2, ΔFBOC1-O2, and ΔFBOC2-O2 are all less than 

0. It indicates that after substitution, the number of local lone pair electrons of O2, the 

conjugation effect between the C1 radical and the O2, the conjugation effect between 

the C2 radical and the O2 all decrease. ΔPNC1, ΔFBOC1-O, and ΔFBOC2-O is also the 

case. ΔACC1 value exceeds 0, indicating that after substitution, the positive charge 



carried by C1 rises and the electron density of C1 decreases. △ACC2 changes very little, 

indicating that the electron density of C2 changes very little. With the variation of 

functional groups on the ether carbon, the FBOF-C1 shows a trend of gradual decrease. 

However, ΔPNO2, ΔFBOC1-O2, ΔFBOC2-O2, ΔACC1 and ΔACC2 show no significant 

changes with the variation of functional groups on the ether carbon. It is important to 

highlight that the ΔPNC1 and ΔFBOC1-O of DMM are substantially smaller than that of 

the other three ethers. ΔFBOC2-O still show no significant changes with the variation of 

functional groups on the ether carbon. This indicates that the two O atoms adjacent to 

C1 in DMM are both affected.

Figure S4 The molecular orbital images of (a) Ethoxyethane (EE); (b) Allyl ether (AE), and (c) 

Dimethoxymethane (DMM)

Figure S5 (a) mean R2, (b) mean RMSE for PLS, GBR, GPR, SVR, KRR models



Figure S6 Schematic of the magnitude of various features for three types of ethers

Figure S7 (a) FBOF-C1, (b) △FBOC1-O/L, (c) △PNC1, (d) △BDEC1, (e) △FBOC2-O, (f) △BDEC2 of 

① Bis(2,2,2-trifluoroethyl) Ether, ② Dicyanomethoxyethane, ③ Fluoromethylmethylether, ④ 

Tetrahydrofuran, ⑤ 1,3- Dioxane after substitution



Figure S8 (a) BDE of the C-H bonds on two ether carbons after substitution by F in LU, LR, and 

UR type ethers; (b) BDE of the C-H bonds on two ether carbons after substitution in LL, UU, and 

RR type ethers (the BDE values of the C-H bonds on the two ether carbons correspond to the colors 

in the legend, with green stripes indicating no hydrogen on that C atom).

Note S2

To reflect the overall antioxidative property of the ether molecule after 

substitution, we should focus on the smaller BDE on two ether carbons after 

substitution. In the Figure S7, ether molecules of different types have been substituted 

through two distinct methods. We need to compare the two substitution methods within 



the same ether molecule, focusing on the magnitude of the smaller BDE value on the 

two carbon atoms after substitution. Taking LU type ethers as an example, we need to 

compare the U-side (blue) BDE of the first substitution method with the L-side (red) 

BDE of the second substitution method. The results indicate that the BDE of the first 

substitution method is greater, suggesting a stronger overall antioxidative property.
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