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Fig. S1 RHE calibration of the Hg/HgO reference electrode in 0.1 M KOH.

Fig. S2 SEM image of (a) N-doped carbon/FeCo, (b) N-doped carbon/FeCoCu-2, (c) N-doped carbon/FeCoCu-10, 

(d) N-doped carbon/FeCoCu-15 and (e) N-doped carbon/FeCoCu-20.



Fig. S3 TEM image of (a) N-doped carbon/FeCo, (b) N-doped carbon/FeCoCu-2, (c) N-doped carbon/FeCoCu-10, 

(d) N-doped carbon/FeCoCu-15 and (e) N-doped carbon/FeCoCu-20.

Fig. S4 HAADF-STEM image and corresponding EDS elemental mappings of N-doped carbon/FeCoCu-15. The 

EDS elemental mappings reveal that Cu (blue) is predominantly distributed throughout the particle, whereas Fe (red) 

and Co (green) are confined to a limited portion on the edge of the particle.



Fig. S5 HAADF-STEM image and corresponding EDS elemental mappings of (a) N-doped carbon/FeCoCu-2, (b) 

N-doped carbon/FeCoCu-10 and (c) N-doped carbon/FeCoCu-20.

Fig. S6 HAADF-STEM images displaying single atoms dispersed in carbon with the intensity profile (inset) and (b) 

EELS spectrum of N-doped carbon/FeCoCu-2.



Fig. S7 HAADF-STEM images showing (a) single atoms dispersed in a carbon matrix and (b) atom clusters. (c) 

EELS spectrum and (d) magnified Cu L peaks of N-doped carbon/FeCoCu-10.

Fig. S8 Pore size distributions of as-prepared catalysts.



Fig. S9 Full-survey XPS spectra of as-prepared catalysts. 

Fig. S10 High-resolution XPS spectra Co 2p for N-doped carbon/FeCo and N-doped carbon/FeCoCu Samples.



Table S1 Elemental composition analysis via high-resolution XPS spectra.

Sample Name C (at. %) N (at. %) O (at. %) Fe (at. %) Co (at. %) Cu (at. %)

N-doped carbon/FeCo 74.91 17.43 6.70 0.54 0.42 –

N-doped carbon/FeCoCu-2 75.91 14.76 8.62 0.35 0.28 0.08

N-doped carbon/FeCoCu-10 73.77 17.44 7.57 0.48 0.32 0.42

N-doped carbon/FeCoCu-15 78.70 11.65 8.30 0.53 0.39 0.43

N-doped carbon/FeCoCu-20 77.26 14.99 6.78 0.36 0.36 0.24

The (–) symbol signifies that the element is not detected.

Table S2 XPS analysis results for high-resolution N 1s spectra of as-prepared samples.

Sample Name

Pyridinic N (at. 
%)

398.5 eV

Metal-N (at. 
%)

399.8 eV

Pyrrolic 
(at. %)
400.9eV

Quaternary N 
(at. %)

402.6 eV

Oxidized N (at. 
%)

404.2 eV

N-doped 
carbon/FeCo 57.0 17.1 20.0 4.1 1.7

N-doped 
carbon/FeCoCu-2 65.9 4.3 23.8 4.2 1.9

N-doped 
carbon/FeCoCu-10 59.3 15.9 19.3 3.7 1.8

N-doped 
carbon/FeCoCu-15 54.8 21.4 18.6 3.5 1.7

N-doped 
carbon/FeCoCu-20 59.5 17.7 18.5 3.2 1.1

Table S3 XPS analysis results for high-resolution C 1s spectra of as-prepared samples.

Sample Name
C‒C (at. %)

248.8 eV
C‒N (at. %)

286.1 eV
C=O (at. %)

287.6 eV
–COO (at. %)

289.2 eV
π– π* (at. %)

290.9 eV

N-doped 
carbon/FeCo 64.9 21.8 5.6 4.7 3.0

N-doped 
carbon/FeCoCu-2 62.5 24.2 5.2 4.6 3.5

N-doped 
carbon/FeCoCu-10 64.2 22.1 5.9 4.6 3.2

N-doped 
carbon/FeCoCu-15 64.3 21.8 5.8 4.4 3.7

N-doped 
carbon/FeCoCu-20 67.2 19.9 5.7 4.3 2.9



Table S4. XPS analysis results for high-resolution Fe 2p spectra of as-prepared samples.

Sample Name Fe0 2p3/2 Fe 2p3/2 Satellite Fe0 2p1/2 Fe 2p1/2 Satellite

N-doped 
carbon/FeCo 710.67 714.88 719.02 723.77 727.98 732.12

N-doped 
carbon/FeCoCu-2 710.60 714.77 718.92 723.70 727.87 732.02

N-doped 
carbon/FeCoCu-10 710.63 714.61 719.05 723.73 727.71 732.15

N-doped 
carbon/FeCoCu-15 710.80 715.15 719.79 723.90 728.25 732.89

N-doped 
carbon/FeCoCu-20 710.75 714.97 719.73 723.85 728.07 732.83

Table S5. XPS analysis results for high-resolution Co 2p spectra of as-prepared samples.

Sample Name
Co0 2p3/2 Co 2p3/2 Satellite Co0 2p1/2 Co 2p1/2 Satellite

N-doped 
carbon/FeCo 780.58 783.80 788.04 795.69 798.80 805.22

N-doped 
carbon/FeCoCu-2 780.65 784.83 788.70 795.65 799.83 805.88

N-doped 
carbon/FeCoCu-10 780.60 784.10 788.17 795.60 799.10 805.31

N-doped 
carbon/FeCoCu-15 780.57 783.66 787.64 795.57 798.66 804.16

N-doped 
carbon/FeCoCu-20 780.58 783.70 787.96 795.58 798.70 804.76

In high-resolution Co 2p XPS spectra, N-doped carbon/FeCo exhibits zero-valence states for 

Co (780.6 and 795.7 eV), along with oxidized valence states at 783.8 and 798.8 eV, accompanied 

by satellite peaks at 788.0 and 805.2 eV. In N-doped carbon/FeCoCu-2 and N-doped 

carbon/FeCoCu-10, higher oxidized valence states than those in N-doped carbon/FeCo are 

observed at increased binding energies. Conversely, N-doped carbon/FeCoCu-15 and N-doped 

carbon/FeCoCu-20 exhibit lower binding energies for oxidized Co states and their satellites, 

suggesting a smaller valence state of Co compared to N-doped carbon/FeCoCu-2, and N-doped 



carbon/FeCoCu-10. These valence state variations align with the NMR spectra, which indicate that 

Co-N-C bonding occurs in samples with low Cu concentrations, leading to a higher oxidation state. 

In contrast, Co bonds with electron-donating Cu atoms in samples with high Cu concentrations, 

resulting in a lower oxidation state.

Table S6 ORR activity comparison of N-doped carbon/FeCoCu, commercial Pt/C, and other reported ORR 
electrocatalysts in 0.1 M KOH.

Catalyst
Mass 

Loading
(mg cm-2)

Onset Potential
(V vs. RHE)

E1/2

(V vs. RHE)
JLimiting

(mA cm-2)
JK at 0.85V
(mA cm-2)

Ref.

Pt/C 0.890 0.807 5.66 3.47
N-doped carbon/FeCo 0.880 0.820 5.64 2.80

N-doped carbon/FeCoCu-2 0.850 0.800 4.83 0.77
N-doped carbon/FeCoCu-10 0.870 0.815 4.98 1.86
N-doped carbon/FeCoCu-15 0.910 0.852 5.62 16.44
N-doped carbon/FeCoCu-20

0.63

0.894 0.839 5.20 6.49

This 
work

CoO-TiO2@NG 0.42 – 0.850 4.85 – [1]
MnO/NC 0.27 0.850 0.740 5.89 – [2]

NiCo/Co-NiO/rGO 0.26 – 0.850 5.74 – [3]
ZnSe@PNCs-1000 0.50 1.040 0.905 5.55 13.62 [4]

Co NPs/N-doped carbon 0.40 0.919 0.859 5.10 – [5]
MoC@C – 0.880 0.780 5.85 6.12 [6]
Cu−N−C 0.77 – 0.850 – 5.92 [7]

FeMn-NrGO – 0.960 0.840 – – [8]
Ni–Co–Mn phosphide – 0.850 0.760 – – [9]

Fe3C|Fe–N–C 0.42 0.961 0.848 5.17 – [10]
(Fe, Ni)@N-MWCNTs 0.46 0.817 0.732 3.94 – [11]
CoP/CoO@MNC-CNT – 0.910 0.838 6.28 – [12]

The (–) symbol signifies that the information has not been reported.



 Fig. S11 LSV curves and K-L plots of (a, b) Pt/C, and (c, d) N-doped carbon/FeCo.



Fig. S12 LSV curves and K-L plots of (a, b) N-doped carbon/FeCoCu-2, (c, d) N-doped carbon/FeCoCu-10 and (e, f) 

N-doped carbon/FeCoCu-20.



The electron transfer number ( ) per oxygen molecule in an ORR process was calculated by 𝑛

the Koutecky-Levich (K-L) equation:

𝐽 ‒ 1 = 𝐽 ‒ 1𝑘 + 𝐽 ‒ 1𝐿 = 𝐽 ‒ 1𝑘 + (𝐵𝜔1/2) ‒ 1

𝐵= 0.62𝑛𝐹𝐶0𝐷
2/3
0 𝑣

‒ 1/6

where  is the measured current density,  is the kinetic current density,  is the diffusion-limited 𝐽 𝐽𝑘 𝐽𝐿

current density,  is the electrode rotation angular velocity ( , N is the linear rotation 𝜔 𝜔= 2𝜋𝑁

speed), B is determined from the slop of K-L plots,  is the Faraday constant (96485 C mol-1),  𝐹 𝐶0

is the bulk concentration of O2 (  mol cm-3),  is the diffusion coefficient of O2 in 0.1 1.2 × 10 ‒ 6 𝐷0

M KOH (  cm2 s-1),  is the kinetic viscosity (0.01 cm2 s-1).1.9 × 10 ‒ 5 𝑣

Fig. S13 (a) LSV curves at rotation speed of 1600 rpm and (b) CV curves of Pt/C measured before and after 10 

hours stability test.



Fig. S14 CV curves for (a) Pt/C, (b) N-doped carbon/FeCo, (c) N-doped carbon/FeCoCu-2, (d) N-doped 

carbon/FeCoCu-10, (e) N-doped carbon/FeCoCu-15 and (f) N-doped carbon/FeCoCu-20 at different scan 

rates within a non-Faradaic potential range in a 0.1 M KOH solution. 



Fig. S15 The electrochemical double-layer capacitance calculated by fitting the CV curves of the catalysts 

in a 0.1 M KOH solution.

To investigate the intrinsic ORR activity of the prepared catalysts, an assessment of the 

electrochemically active surface area (ECSA) was carried out using electrochemical double-layer 

capacitance (Cdl). CV measurements were conducted on a rotating electrode in a potential window 

of 1.125-1.225 V vs. RHE, with scan rates ranging from 10.0 to 60.0 mV s-1 (Fig. S12). The Cdl 

was determined by analyzing the slope of the linear fit of half of the charging and discharging 

current density differences (  at a potential of 1.175 V vs. RHE) against the scan rate. 
∆𝑗=

𝑗𝑐 ‒ 𝑗𝑑
2

As depicted in the Fig. S13, the electrochemical double-layer capacitance (Cdl) of N-doped 

carbon/FeCoCu-15 is calculated to be 10.4 mF cm-2, surpassing that of N-doped carbon/FeCo (7.9 

mF cm-2), N-doped carbon/FeCoCu-2 (6.3 mF cm-2), and N-doped carbon/FeCoCu-10 (8.4 mF 

cm-2), albeit slightly smaller than that of N-doped carbon/FeCoCu-20 (11.2 mF cm-2).

The catalytic activity of the as-prepared materials was evaluated using Turnover Frequency 

(TOF), calculated as follows:

𝑇𝑂𝐹=
𝐼

𝑛𝐹𝑁



where 𝐼 is the current measured at a specific potential (A), 𝑛 is the number of electrons 

transferred per molecule (typically 4 for ORR), 𝐹 is the Faraday constant (96485 C·mol-1), and 𝑁 

represents the number of active sites (mol), determined from XPS results.

Table S7 TOF calculation results of as-prepared catalysts and Pt/C.

Current at 0.8 V 
(mA cm-2) n F (C mol-1) Active site (mol cm-2) TOF (s-1)

Pt/C -2.66 4 96485 6.45E-07 0.0107

N-doped 
carbon/FeCo -2.92 4 96485 4.63E-07 0.0163

N-doped 
carbon/FeCoCu-2 -1.97 4 96485 3.44E-07 0.0148

N-doped 
carbon/FeCoCu-10 -2.58 4 96485 5.80E-07 0.0115

N-doped 
carbon/FeCoCu-15 -4.22 4 96485 6.43E-07 0.0170

N-doped 
carbon/FeCoCu-20 -3.68 4 96485 4.64E-07 0.0206

Fig. S16 (a) LSV curves for both ORR and OER of Pt/C, RuO2, and the prepared catalysts. (b) Tafel slops 

of Pt/C, RuO2, and the prepared catalysts.



Fig. S17 Structure models of (a) N-doped carbon/FeCo, (b) N-doped carbon/Fe-Co-Cu, and (c) N-doped 

carbon/FeCoCu.

Fig. S18 Galvanostatic cycling curves of coin cells using (a) N-doped carbon/FeCoCu as bifunctional catalyst and (b) 

a mix of N-doped carbon/FeCoCu and RuO2 as catalyst in air cathode. 



Fig. S19 Photographic image of the voltage meter showing the OCV of ZABs.

Fig. S20 Long-term galvanostatic cycling at 5 mA cm-2 of zinc-air batteries based on N-doped carbon/FeCoCu-15 

ORR electrocatalysts.



Table S8 Comparison of typical parameters of this work with reported Zn-air batteries.

ORR catalyst Loading
(mg cm-2)

Open 
Circuit 

Voltage (V)

Specific 
Capacity
(mAh g-1)

Energy 
Density

(Wh kg-1)

Peak 
Power 

Density 
(mW cm-2)

Durability
(h) Ref.

N-doped 
carbon/FeCoCu-15 0.50 1.50 810 918 154.7 900 h at 2 mA cm-2 This 

work
CoO-TiO2@NG – – 816 – 146.8 110 h [1]

MnO/NC 1.00 1.39 795 – 146.5 60 h at 5 mA cm-2 [2]
NiCo/Co-NiO/rGO 0.50 1.44 807 969 95.5 140 h at 10 mA cm-2 [3]
ZnSe@PNCs-1000 1.00 1.44 818 – 126 200 h at 5 mA cm-2 [4]

MoC@C 1.00 1.43 796 969 132.2 – [6]

Cu−N−C – 1.45 718 – 92.2 150 h at 10 mA cm-2 [7]
CoP/CoO@MNC-

CNT 2.00 1.40 725 – 152.8 500 h at 10 mA cm-2 [12]

CoNiPt@C 1.60 1.60 – – 172 70 h at 10 mA cm-2 [13]
Fe-NP/MNCF 1.48 795 – 111.6 120 h [14]

Cu-Zn/N-doped 
carbon 1.00 1.20 606 693 170 – [15]

Fe-N-C/Nb4C3Tx 1.00 1.51 – – 136 220 h at 5 mA cm-2 [16]
Fe/N-doped carbon – 1.47 630 – 186.1 60 h at 10 mA cm-2 [17]

FeNb2O6/NICC 1.00 1.46 – – 100.6 200 h at 5 mA cm-2 [18]
Fe-Phen-MIL101 1.00 1.58 725 – 125.8 140 h [19]

H-
CoTe2/NiTe2@NCBs – 1.54 762 – 166.5 300 h at 10 mA cm-2 [20]

ZnCo-ZIF@Zn-
MOF-74 – 1.43 848 – 166 155 h at 2 mA cm-2 [21]

Fe@HNC 1.00 1.49 812 – 171.5 130 h at 5 mA cm-2 [22]
Fe3C/N,S-CNS 1.00 1.42 – – 163 750 h at 5 mA cm-2 [23]

N-GCNT/FeCo-3 2.00 1.48 872 653 97.6 40 h at 150 mA cm-2 [24]
The (–) symbol signifies that the information has not been reported.
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