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Figure S1. (a-e) FTIR absorption spectra in the region of 600 to 655 cm-1 for GBx (15 ≤ 𝑥 ≤
50) blended biopolymer ionogel electrolytes with different BMIMBF4 compositions. 

Deconvoluted FTIR absorption spectra based on Gaussian fitting function for the GBx ionogels 

are represented by solid lines. 
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Figure S2. (a-e) FTIR absorption spectra in the region, 1200–1400 cm-1 for GBx (15 ≤ 𝑥 ≤
50) blended biopolymer ionogel electrolytes with different BMIMBF4 compositions. Solid 

lines show the Gaussian fitting of the characteristic absorption peaks. (f) Percentage area under 

the peak corresponding to amide-III band is shown as a function of BMIMBF4 doping 

concentrations in GBx (15 ≤ 𝑥 ≤ 50) ionogels. 
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Figure S3. Cyclic voltammetry of the device measured at a scan rate of 0.1 V/s at voltage 

windows of 8 V and 9 V. 
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Figure S4. (a) Cyclic voltammetry of the micro-devices measured at a scan rate of 0.1 V/s at 

different voltage windows (1-9 V) developed with ionogels (a,b) GB15, (c,d) GB25, (e) GB35, 

and (f) GB50. 
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Figure S5. Cyclic voltammetry of the device measured at a scan rate of 10 V/s at different 

voltage windows (1-7.5 V). 

 

 

Figure S6. Galvanostatic charge-discharge for the device measured at a voltage window of 7.5 

V under varying current densities, (a) 1.5, (b) 2, (c) 2.5, (d) 3, and (e) 4 mA/cm2. 
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Table 1. Supercapacitive performance of CS/GL blended biopolymer ionogel electrolyte 

compared with other ionic liquid-based electrolyte materials. 

Current 

Collector 

Electrode 

Coating material 

Ionic liquid-based 

electrolytes 

ESW 

(V) 

Capacitance Referenc

es 

Aluminum 

foil 

Polyacrylonitrile

-derived porous 

carbon fibers 

(PPCF) 

PVA-PAA Ionogel 2 615 mF/cm2 1 

Graphite 

paper 

Activated 

Carbon 

PAAm/ChCl/ 

[EMIM][TFSI]IL  

2.4  43.81 F/g 2 

Au Vertically 

oriented 

graphene 

ionogel (GI) 

 EMImBF4  4 149 µF/cm2 3 

Silver ink  Printed Carbon PVA-[DPTA][ BF4] 1.2 98.8 

mF/cm2 

4 

Graphite 

paper  

Activated 

Carbon 

PAAM-PVA/ 

BMIMBr IL 

1.6  284.8 

mF/cm2 

5 

Au Activated 

Carbon 

PIP13FSI/ PYR14FSI/ 

SiO2  

3 90 F/g 6 

Aluminum 

foil 

Carbon AAm/ 

[EMIM]+[NO3]
−/ 

PEGDA/ 

2 37.35 F/g 7 

- 3D 

interconnected 

large 

mesoporous 

carbon 

PVDF-HFP 

/[EMI][BF4] 

4 323 F/g 8 

None Ionic liquid pre-

intercalated 

MXene (PM) 

 EMIMBF4/PVDF-

HFP ionogel  

3 44 mF/cm² 9 

Au None CS/GL/LiClO4/BMI

MBF4 ionogel 

7.5 5.78 F/cm² Present 

work 
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Figure S7. (a) Galvanostatic charge-discharge for the device measured at a fixed current 

density of 2 mA/cm2 under varying potential windows (1-7 V), (b) Variation of areal 

capacitance with the potential window at a fixed current density of 2 mA/cm2. 

 

Figure S8. (a) Galvanostatic charge-discharge for the device measured at a fixed current 

density of 2 mA/cm2 for 1st, 400th and 500th cycle, (b) Cycling stability for the device over 500 

cycles. 
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Figure S9. Nyquist plot of the device over a frequency range of 1MHz to 1 Hz, solid line 

represents the modelled plots based on the equivalent circuit fitting as shown in the inset. 
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Figure S10. Synaptic behaviour emulated with pulsed voltage signals and fixed pulse interval 

(ti = 2 s) with varying number of pulses (N = 3, 5, 7, 10, 15, 20) at a pulse width (tw), (a) 0.2 s, 

(b) 0.4 s, and (c) 0.7 s. 
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