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Supplementary Figures

CuCl, o-tolylthiourea TT-CP Cluster structure
(Cu,SeCly)

Fig. S1 Schematic illustration showing the fabrication process of TT-CP by mixing CuCl, and o-tolylthiourea.

b)

O Experimental
— Simulated
— Bragg peaks
— Difference

Intensity (a.u.)

CE 0T T A0 OO A A

_‘l N Lo o y ook
5 15 25 35 45 55
20 (deg.)

Fig. S2 (a) Optical microscope image of a TT-CP single crystal. (b) Rietveld refinement result of micrometer-

scale TT-CP powders.



Fig. S3 SEM image and EDS mapping result of a single TT-CP micrometer-scale powder, where the Cu, S, Cl,

C, and S elements are detected.

i TG

e

vnH), 7 \|}(C—H)
v(NH,)

v: stretching
é: in-plane bending v(C-C)
y: out-of-plane bending

,P]‘ V*— Y(C-H)

v(NH),
v(NH,)

Transmittance (%)

% v(C=S)
v(C-C)
T .

4,000 3,500 3,000 2,500 2,000 1,500 1,000
Wavenumber (cm™1)

— o-tolylthiourea

Fig. S4 FT-IR spectra of o-tolylthiourea and TT-CP.
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Fig. S5 XPS spectra of TT-CP measured at the core level region of (a) Cu 2p, (b) S 2p, (c) Cl 2p, (d) C 1s, and
(e) N 1s.
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Fig. S6 Raman spectra of o-tolylthiourea, TT-CP, IM-Cu, and EA-CuCP.
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Fig. S7 HER polarization curves of TT-CP and IM-CP
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Fig. S8 PXRD patterns of CA-CuCP, TA-CuCP, and EA-CuCP/carbon paper. Inset red vertical lines present

reference diffraction patterns of Cu (mp-30), as obtained from the Materials Project.
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Fig. S9 Raman spectra of CA-CuCP and TA-CuCP.
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Fig. S10 Cyclic voltammograms (CV) of Cu catalyst at various scan rates in a 0.5 M H,SO, solution: (a) EA-
CuCP, (b) CuNP, (c) Average current density (Aj=(j,-j.)/2) against the scan rate showing the double-layer
capacitance (Cy) extracted from the corresponding CVs. (d) LSV based on the ECSA-specific current density in
a 0.5 M H,SOy solution. () The ECSA obtained by Cy measurement was as follows for each catalyst.

The double layer capacitance (Cq) was determined from a CV using the equation: Cyq= Aj
(Ja-jc)/2v, where j, and j. are anodic and cathodic current densities at AE = 0.1 V and v is the
scan rate in mV/s . The non-Faradic current density based electrochemically active surface
area (ECSA) was estimated according to the equation: ECSA = Cy/C; , (where C denoted
specific capacitance and was 20-60 uF cm™2 in 0.5 M H,SQ,). In this study the value is
selected as 40 uF cm™2.! For the measurement, an electrode with a circle-shaped glassy
carbon of 0.3 cm in diameter was used at the end of the rod.
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Fig. S11 HER polarization curves of Pt/C and EA-CuCP.
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Fig. S12 Raman spectrum of EA-CuCP after the one-day HER stability test.
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Fig. S13 EDS line profile measured across the boundary of core Cu and surface oxides (Cu,O and CuO).
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Fig. S14 Magnified and baseline-subtracted Raman spectrum of EA-CuCP.
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Fig. S15 XPS spectra of EA-CuCP measured at the core level region of (a) Cu 2p, (b) O 1s, and (c) C 1s.
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Fig. S16 Cu L-edge NEXAFS spectra of Com-Cu,O, Com-CuO and EA-CuCP recorded by (a) TEY and (b) TFY

detection modes.
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Fig. S17 (a) HR-TEM image of EA-CuCP. FFT patterns obtained at (b) CuO-rich region and (c) Cu,O-rich region.

Fig. S18 HR-TEM image and FFT patterns of EA-CuCP measured at three different regions.
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Fig. S19 Inverse FFT patterns of EA-CuCP with lattice fringes of (a) both Cu,0 and CuO, (b) Cu,0, and (c) CuO
highlighted.
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Fig. S20 Tafel slopes of commercial copper oxides including Com-Cu,O and Com-CuO.
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Figure S21. SEM images of EA-CuCP (a) before and (b) after (under -20 mA/cm?, 2800 h) the stability test.
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Figure S22. XPS spectra of EA-CuCP after stability test (under -20 mA/cm?, 2800 h). (a) Cu 2p, (b) O 1s, and
(c) C 1s.
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Figure S23. XRD pattern of EA-CuCP after stability test (under -20 mA/cm?, 2 weeks).
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Fig. S24 Cu L-edge NEXAFS spectra of Cu foil, CuNP, and EA-CuCP recorded using the TFY detection mode.
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Fig. S25 Raman spectra of Cu foil and CuNP.
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Fig. S26 Electrochemical impedance spectroscopy analysis of copper-based materials.

Fig. S27 SEM image of a TT-CP-mod (Cu:S=1:1)



Supplementary Tables

Lattice o o o Goodness of
Sample Space group parameters Rexp (%) Ryp(%) R, (%) fitting
TT-CP R-3 a(A) 19.7045 6.28 8.66 6.73 1.38

c(A)31.6978

Table S1 Fitting parameters for the Rietveld refinement of TT-CP.




Table S2 Elemental composition of as-synthesized TT-CP.

Element Composition (at%)
C 61.76
Cl 4.67
Cu 6.02
N 17.56
O 1.61
S 8.38




Table S3 HER performance of previously reported copper-based catalysts.

HER overpotential Stability Electrolyte Reference
Cu-Cu,ONP@C 672 mV@-10 mA cm™2 - 0.4 M H,SO, [1]
Pure Cu,O 549 mV@-10 mA cm™> - 0.5M H,SO, [2]
Cu,0@rGO 458 mV@—-10 mA cm™ - 0.5 M H,SO, [2]
Cu-Cu,0@C2 637 mV@—10 mA cm 2 - 0.4 M H,SO, 3]
Cu,0-200/GCE | 184 mV@-10 mA cm 201 gog@?gilg;/ v | 10MKOH [4]
Cu mesh 622 mV@-10 mA cm™2 - 0.5 M H,SO, [5]
Cu, O@CuM400 | 460 mV@—10 mA cm™2 - 0.5 M H,SO, [5]
Cu,0O@CuM300 | 498 mV@-10 mA cm2 72.52?n};<%m,2 0.5 M H,SO, [5]
Plasma spray Cu 182 mV@—10 mA cm™ 3((1) (iloc?n:)cfrf*%, 0.5 M H,SO, [6]

Cu/Cu,0O- ~ 5 I5h@

CuO/rGO-400 105 mV@-10 mA cm 10 mA om 2 1.0 M KOH [7]

EA-CuCP 31 mV@-10mA cm2 | 2300hr@ 0.5 M H,SO, This work

—20 mA cm2
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