## Unraveling Structure-Performance Relationships: Tailored d-band Centers in monolayer MSi<sub>2</sub>N<sub>4</sub> and MoSi<sub>2</sub>Z<sub>4</sub> by Atomic Substitution

Xuerui Shi<sup>1</sup>, Mingjun Li<sup>1</sup>, Guozhao Fang<sup>2</sup>, Anqiang Pan<sup>3</sup>, Shuquan Liang<sup>2</sup>, Mengqiu Long<sup>1, 3,\*</sup>

1 School of Physics, Central South University, Changsha 410083, China

2 School of Materials Science and Engineering, Central South University, Changsha 410083, China

3 Institute of Low-dimensional Quantum Materials and Devices, School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China

Table S1 The lattice constants (a), alterations in bond lengths ( $d_1$ - $d_4$ ), angles ( $\theta_1$ - $\theta_4$ ) and band gaps of monolayer MSi<sub>2</sub>N<sub>4</sub> and MoSi<sub>2</sub>Z<sub>4</sub>

|                                   | a(Å) | d <sub>1</sub> (Å) | d <sub>2</sub> (Å) | d <sub>3</sub> (Å) | d4(Å) | $\theta_1(^\circ)$ | $\theta_2(^\circ)$ | $\theta_3(^\circ)$ | $\theta_4(^\circ)$ | $E_{g}$ |
|-----------------------------------|------|--------------------|--------------------|--------------------|-------|--------------------|--------------------|--------------------|--------------------|---------|
|                                   |      |                    |                    |                    |       |                    |                    |                    |                    | (eV)    |
| MoSi <sub>2</sub> N <sub>4</sub>  | 2.91 | 6.99               | 1.75               | 1.75               | 2.09  | 112.09             | 106.71             | 88.22              | 73.01              | 1.70    |
| $CrSi_2N_4$                       | 2.84 | 6.86               | 1.72               | 1.75               | 2.00  | 110.74             | 108.17             | 90.36              | 70.02              | 0.51    |
| $WSi_2N_4$                        | 2.90 | 7.01               | 1.75               | 1.74               | 2.10  | 112.26             | 106.60             | 87.84              | 73.60              | 2.13    |
| $TaSi_2N_4$                       | 2.96 | 7.00               | 1.78               | 1.75               | 2.12  | 112.70             | 106.00             | 88.29              | 72.94              | /       |
| $TiSi_2N_4 \\$                    | 2.92 | 6.90               | 1.76               | 1.75               | 2.06  | 111.86             | 106.96             | 90.1               | 70.44              | 1.63    |
| $ZrSi_2N_4$                       | 3.03 | 7.04               | 1.81               | 1.75               | 2.18  | 113.27             | 105.34             | 88.26              | 72.97              | 1.57    |
| HfSi <sub>2</sub> N <sub>4</sub>  | 3.02 | 6.99               | 1.80               | 1.75               | 2.18  | 112.95             | 105.65             | 88.80              | 72.12              | 1.63    |
| MoSi <sub>2</sub> P <sub>4</sub>  | 3.46 | 9.36               | 2.25               | 2.23               | 2.45  | 100.73             | 117.22             | 89.75              | 70.88              | 0.69    |
| MoSi <sub>2</sub> As <sub>4</sub> | 3.61 | 9.90               | 2.36               | 2.34               | 2.56  | 99.43              | 118.25             | 89.56              | 71.15              | 0.60    |

<sup>\*</sup> Corresponding author.

E-mail address: mqlong@csu.edu.cn (M. Long).



Fig. S1 Side view and top view of monolayer  $MSi_2N_4$  (M= Mo, Cr, W, Ta, Ti, Zr and Hf) and  $MoSi_2Z_4$  (Z= P and As)



Fig. S2 The free energy and temperature over 5 ps during AIMD at 300 K of monolayer  $MSi_2N_4$  and  $MoSi_2Z_4$ 



Fig. S3 The formation energy of monolayer  $MSi_2N_4$  and  $MoSi_2Z_4$ 



Fig. S4 The adsorption energy of stable adsorption site for alkali metal atoms of monolayer  $MSi_2N_4$  and  $MoSi_2Z_4$ 



Fig.S5 The charge density difference at the most stable positions of Li adsorption on monolayer  $MSi_2N_4$  and  $MoSi_2Z_4$ 



Fig.S6 The PDOS of TMs before and after Li adsorption



Fig. S7 The bond lengths at the most stable positions of Li adsorption on monolayer  $MSi_2N_4$  and  $MoSi_2Z_4$ 



Fig. S8 The band structures of monolayer MSi<sub>2</sub>N<sub>4</sub> and MoSi<sub>2</sub>Z<sub>4</sub>

|                                   | C <sub>11</sub> | C <sub>12</sub> | C <sub>22</sub> | $C_{66} = G^{2D}$ | $Y_{[x]}$ | Y <sub>[y]</sub> | $\nu_{[x]}$ | $\nu_{[y]}$ |
|-----------------------------------|-----------------|-----------------|-----------------|-------------------|-----------|------------------|-------------|-------------|
| CrSi <sub>2</sub> N <sub>4</sub>  | 523.71          | 154.37          | 523.71          | 184.67            | 478.21    | 478.21           | 0.30        | 0.30        |
| WSi <sub>2</sub> N <sub>4</sub>   | 574.64          | 158.07          | 574.64          | 208.29            | 531.16    | 531.16           | 0.28        | 0.28        |
| $TaSi_2N_4$                       | 518.85          | 166.10          | 518.85          | 176.37            | 465.67    | 465.67           | 0.32        | 0.32        |
| $TiSi_2N_4$                       | 498.16          | 153.31          | 498.16          | 172.43            | 450.98    | 450.98           | 0.31        | 0.31        |
| $ZrSi_2N_4$                       | 437.89          | 138.86          | 437.89          | 149.52            | 393.85    | 393.85           | 0.32        | 0.32        |
| HfSi <sub>2</sub> N <sub>4</sub>  | 459.25          | 156.23          | 459.25          | 151.51            | 406.11    | 406.11           | 0.34        | 0.34        |
| MoSi <sub>2</sub> P <sub>4</sub>  | 218.90          | 55.57           | 218.90          | 81.67             | 204.80    | 204.80           | 0.25        | 0.25        |
| MoSi <sub>2</sub> As <sub>4</sub> | 181.46          | 52.83           | 181.46          | 64.32             | 166.08    | 166.08           | 0.29        | 0.29        |

Table S2 Elastic Properties of  $MSi_2N_4$  and  $MoSi_2Z_4$  (Elastic Constants  $C_{ij}$ , Shear Modulus  $G^{2D}$ , Young's Modulus Y in N/m, and Poisson's Ratio v)



Fig. S9 The voltage profiles as a function of specific capacity of monolayer MSi<sub>2</sub>N<sub>4</sub> and MoSi<sub>2</sub>Z<sub>4</sub>