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S1 Machine Learning Details

Voronoi tessellation: 

The Voronoi tessellation method depends solely on the crystal structure, dividing 

the crystal into regions associated with the nearest neighbors of central atoms. This 

approach provides a clear way to describe the local crystal structure of materials. Using 

the Magpie software package, the local environment characteristics of each atom are 

first calculated, and then the distribution of these characteristics is statistically analyzed 

to obtain the overall properties of the crystal.1,2

Model comparison: 

In this study, the dataset is relatively small in scale with moderate feature 

dimensions, where the relationships between variables involve complex nonlinear 

interactions. In such scenarios, tree-based models are particularly well-suited due to 

their minimal requirements for data preprocessing, robustness to feature scaling, strong 

capability in modeling nonlinear relationships, and reduced tendency to overfit. The 

performance of three individual tree-based models—Gradient Boosting Regressor 

(GBR), Random Forest Regressor (RFR), and Decision Tree Regressor (DTR)—was 

evaluated in Figure S1 and Table S1, with all achieving R² scores exceeding 0.8 on the 

test set, demonstrating great predictive capabilities. However, analysis of the learning 

curves revealed potential concerns: both DTR and GBR achieved perfect training scores 

of 1.0 and exhibited a substantial gap between training and cross-validation 

performance, indicating a high degree of overfitting. In contrast, RFR also showed signs 

of overfitting, but to a comparatively lesser extent. These observations are closely 

related to the inherent learning mechanisms of the models: DTR is a single-tree model 

with a simple structure and high interpretability, but it relies heavily on training data 

and is prone to overfitting. GBR employs a boosting strategy that sequentially fits 

residuals, which makes it particularly susceptible to overfitting to noise in small 

datasets. In contrast, RFR integrates multiple decision trees via a bagging strategy, 

effectively reducing model variance and enhancing generalization performance. 
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Although GBR, RFR, and DTR all belong to the family of tree-based models, their 

learning mechanisms are significantly different and show strong complementarity. By 

combining these models, the Voting Regressor can fully leverage their complementary 

strengths and offset their individual limitations, thereby achieving a more optimal 

balance in the bias-variance tradeoff and enhancing overall predictive performance and 

generalization ability.

In addition, to evaluate the impact of different base models on the performance of 

the ensemble, we explored various combinations of algorithms, as summarized in the 

table below. When using only Linear Regression (LR) and Kernel Ridge Regression 

(KRR) as base models, the performance of the Voting Regressor is poor (R² < 0.3), 

indicating that linear methods struggle to effectively model the nonlinear structures in 

the data. However, as GBR, RFR, and DTR are added, the model’s R² improves 

significantly. When the voting weights for GBR, RFR, and DTR are set to 90%, the R² 

increases to approximately 0.90, which is close to the performance of our selected VR 

(GBR + RFR + DTR) model (R² ≈ 0.92). These data demonstrate the critical role of 

tree-based models in this study and validate the synergistic effect of the three models.

Based on the reviewer’s suggestion, a Fully Connected Neural Network (FCNN) 

and a Stacking Regressor (SR) with GBR, RFR, and DTR as base estimators were 

constructed. The performance of both models is shown in the Figure S1. The 

constructed FCNN model consists of five fully connected hidden layers and one output 

layer, with 10% Dropout applied after each layer to prevent overfitting. The output 

layer uses the tanh activation function to produce normalized prediction values. The 

model exhibits nonlinear modeling capabilities, but its performance (R² ≈ 0.7) is 

significantly lower than that of the tree-based VR model on this dataset, indicating 

limitations in the neural network's generalization ability and predictive accuracy for this 

task. Moreover, the FCNN model consumes more resources and operates more slowly 

(training time for the neural network is 10 minutes, while Stacking Regressor takes 40 

seconds and Voting Regressor takes 9.5 seconds). Additionally, the complex structure 

of the neural network makes its decision-making process difficult to interpret using 

feature importance or local interpretability methods, limiting its application in material 
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mechanism studies.

The meta-learner of the Stacking model (using Ridge Regression) learns the 

optimal combination of the base model predictions (GBR, RFR, DTR) from the training 

data, with coefficient weights of 34%, 52%, and 14%, respectively. The R² of the model 

is 0.89, which is close to the VR model, but it slightly lags behind in terms of MAE and 

RMSE. The Stacking model theoretically has stronger nonlinear fitting capabilities by 

introducing a meta-learner in the secondary layer to re-learn the outputs of the base 

estimators. However, the VR model has a simpler structure, lower training costs, and is 

less sensitive to parameters, making it more practical, especially with limited sample 

sizes in datasets. Additionally, the Voting strategy is essentially a "denoising average" 

in the form of model fusion, which helps reduce the variance of individual model 

predictions and improves overall robustness. Therefore, in the condition of the current 

dataset, the VR model strikes a better balance between performance and complexity.

After thoroughly comparing the Voting, Stacking, and neural network, we 

ultimately selected the Voting Regressor composed of GBR, RFR, and DTR as the main 

model. This combination strikes an ideal balance between predictive performance, 

model interpretability, and computational efficiency, making it especially suitable for 

research in materials science, where the reliability of results and the interpretability of 

mechanisms are crucial. We do acknowledge the value of methods such as Stacking 

and neural networks; however, based on the characteristics of our data and the 

experimental results, the VR model emerges as a more suitable choice for the current 

task.

Voting Regressor: 

Voting Regressor is an ensemble learning model that leverages the diversity and 

complementarity of multiple base regressors to enhance overall prediction accuracy and 

stability. This paper uses three different basic regressors: GBR, RFR and DTR. These 

basic regressors are based on different algorithmic and provide diverse prediction 

capabilities. GBR improves predictions by progressively constructing multiple weak 

learners and optimizing the loss function, making it suitable for handling complex data 
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relationships. RFR, on the other hand, builds multiple decision trees and uses their 

average or majority vote as the final prediction, reducing overfitting risk and providing 

good robustness to noisy data. DTR enhances randomness by randomly selecting 

features and samples to construct decision trees, thereby improving the model's 

generalization ability. Each basic regressor independently predicts the given data, and 

then VR performs a weighted average of these prediction results to improve the 

prediction ability of the overall model and produce the final prediction value. This 

ensemble method not only effectively combines the advantages of multiple models but 

also reduces the bias and variance that a single model might introduce, thereby 

improving overall prediction accuracy and stability.3

To further optimize the performance of the VR model, GridSearchCV was 

employed to perform systematic hyperparameter tuning for each base regressor, with 

the optimization objective being the average R² score under 10-fold cross-validation. 

The tuned parameters covered key influencing factors such as learning rate, maximum 

tree depth, and the number of estimators. The optimal hyperparameters identified were: 

GBR (learning_rate=0.15, n_estimators=30), RFR (max_depth=8, n_estimators=40), 

and DTR (max_depth=5, min_samples_split=4). The best_estimator_ from 

GridSearchCV was used to construct and train the final VR model.

Regarding the dataset, it was divided into a training set and an independent test set 

in an 8:2 ratio. All model training, parameter tuning, and cross-validation were 

conducted solely on the training set, while the test set was reserved for evaluating the 

final model’s generalization ability. Additionally, to assess model performance across 

different data scales, 5-fold cross-validation was used to generate the learning curve. 

The resulting training and cross-validation scores reflect the model’s bias-variance 

trade-off during training, and the final R² score obtained on the test set offers an 

objective measure of its predictive accuracy on real data.

S2 DFT Calculation Details

In this work, the first-principles calculations have been carried out by using the 
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QUANTUM-ESPRESSO package.4,5 Generalized gradient approximation (GGA) in 

the form of Perdew-Burke-Ernzerhof (PBE) was used to describe the exchange-

correlation interactions.6,7 The periodic boundary condition was applied in all of the 

plane wave-based electronic structure calculations. The energy cutoffs for the wave 

functions and charge density are set to 45 Ry and 360 Ry, respectively. The energy 

convergence threshold of 10-6 Ry was used for all the structural optimization. There are 

totally 250 step ionic movement in the structural relaxation. The criterion of the atomic 

force during the structural relaxation was 10-3 a.u. 

To evaluate the dynamic stability of the predicted materials, we performed AIMD 

simulations for 5000 fs. The time step is 1 fs. 2×2×2 supercell was used for the AIMD 

simulation. The constant pressure NPT ensemble is adopted, and the temperature was 

controlled at 300 K. 8

Optical absorption coefficient was obtained by calculating the real and imaginary parts 

of the dielectric constants as follows:9

𝜖= 𝜖1 + 𝑖𝜖2

𝛼=
2𝑤
𝑐
( 𝜖1

2 + 𝜖2
2 ‒ 𝜖1)

1/2

The spectroscopic limited maximum efficiency (SLME)  was calculated as formula:10𝜂

𝜂=
𝑃𝑚𝑎𝑥
𝑃𝑖𝑛

=
𝑚𝑎𝑥{(𝐽𝑠𝑐 ‒ 𝐽0(𝑒

𝑒𝑉
𝐾𝑇 ‒ 1))𝑉}𝑉

∞

∫
0

𝐸𝐼𝑠𝑢𝑛(𝐸)𝑑𝐸

The decomposition enthalpy ( ) was calculated by querying all potential subphases ∆𝐻

of all candidate materials and using the following formula:

Δ𝐻= 𝐸(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠) ‒ 𝐸(𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑛𝑔)

H＜0 indicates that the energy of the compound is less than the sum of the energies of 

its secondary phases, which means that the compound is thermodynamically stable; 

conversely, H＞0 means that the compound is thermodynamically unstable.

S3 Calculation of SLME potential for specific elements
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Assuming there are  materials containing a specific element in the prediction dataset, 𝑥
with  of them having an SLME greater than 30%, the potential of this specific element 𝑦

can be calculated using the following formula: .
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =

𝑦
𝑥
× 100%

S4 Experimental discussion of five candidates

 NaSrP: NaSrP can be synthesized by reacting metallic Na alloy with Sr and red 

phosphorus under high-temperature sealed conditions in a Nb tube. Dong et al. 

employed vacuum-sealed quartz tubes and carried out heat treatment at 600 °C, 

eventually obtaining irregular red crystals, indicating a clear synthetic route is 

experimentally achievable.11 

 Mg(InTe2)2: Shahid et al. reacted Mg, In, and high-purity Te elements in 

carbon-coated fused silica tubes, and through heat treatment processes including 

holding at 1173 K, long-term annealing at 973 K, and programmed cooling, 

successfully obtained black crystals with a composition close to 1:2:4, exhibiting good 

elemental homogeneity and stability. This indicates that the Mg-based 

phosphorus/chalcogenide compound system has good experimental synthesizeability.12 

 Ba2PCl and Ba₈P₅Br: Although Ba₂PCl and Ba₈P₅Br currently lack explicit 

experimental synthesis literature, the reported Ba₂P₇X(X=Cl, Br, and I) provides a solid 

reference foundation for Ba–P–X system phosphorous halides.13 Ba₂P₇X is synthesized 

through Ba, red phosphorus, and BaX₂ in vacuum-sealed silica ampoules, followed by 

long-term high-temperature annealing to obtain pure crystals. This synthesis process 

offers a clear pathway reference for the potential preparation and characterization of 

Ba₂PCl and Ba₈P₅Br. By adjusting the precursor ratio and reaction conditions, 

especially by reducing the phosphorus/barium ratio or modifying the reaction 

atmosphere, it is expected to produce structurally stable Ba₂PCl and Ba₈P₅Br materials.

 Ba₃(InP₂)₂：There are no experimental synthesis reports available, but its 

composition and structure are similar to several known indium phosphide materials, 

indicating good potential for synthesis. The In–P bond structure in this material 

resembles that of InP and InP₂-type structural units, and there is extensive synthesis 
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experience with InP materials.14 Theoretical calculations show that Ba₃(InP₂)₂ possesses 

good thermodynamic stability and kinetic stability, further indicating its potential for 

stable existence under conventional experimental conditions. Regarding toxicity, Ba is 

considered a moderately toxic element, and care should be taken to avoid contact with 

its soluble salts during experiments. In and P elements are commonly used in inorganic 

synthesis, within vapors or dust potentially posing a respiratory hazard, but the overall 

toxicity is controllable and can be properly managed through standard laboratory safety 

measures (such as working in a fume hood and wearing gloves).
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Figure S1. Learning curve of the (a) GBR model, (b) RFR model, (c) DTR model, and (d) SR 

model. (e) R2 and (f) losses of FCNN model.
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Figure S2. Log–log plot of the error scaling curve.
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Figure S3. SLME distribution from DFT calculations and VR model predictions.
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Figure S4. Band structures, transition probabilities at each high symmetry point, and the crystal 

structures for (a) InCuGeS4, (b) Zr6CoCl15, (c) Li3InN2, (d) CsSiTe3, and (e) PBr7. 
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Figure S5. Relationship between Jsc and Voc with band gap.
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Figure S6. Comparison of device performance.
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Figure S7. Changes in Gibbs free energy (ΔG) of the candidates at different temperatures.
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Table S1. Performance evaluation of different models.

Model R2 MAE RMSE Weight

GBR 0.82 1.39 5.05 /

RFR 0.87 1.31 4.17 /

DTR 0.81 1.47 5.07 /

VR(LR+KRR) 0.27 8.78 10.10 50%, 50%

VR(LR+KRR+GBR) 0.63 6.22 7.22 33%, 33%,33%

VR(LR+KRR+GBR+RFR) 0.76 4.93 5.84 25%, 25%,25%,25%

VR(LR+KRR+GBR+RFR+DTR) 0.81 2.68 3.92 20%, 20%,20%,20%,20%

VR(LR+KRR+GBR+RFR+DTR) 0.90 1.98 3.80 5%, 5%,30%,30%,30%

VR(GBR+RFR+DTR) 0.92 1.04 3.35 33%, 33%,33%

SR(GBR+RFR+DTR) 0.89 1.28 3.73 34%, 52%, 14%



17

Table S2. Relative effective mass of electrons and holes for 10 candidate structures. 

Formula Li3InN2 Mg(InTe2)2 Ba2PCl CsSiTe3 InCuGeS4

MP id 1029562 1222182 27869 570957 1223929

Space group symbol 𝐼𝑎3̅ 𝐼4̅ 𝑅3̅𝑚 Cc 𝐼4̅

m* (electron) 0.28 0.16 0.36 0.51 0.25

m* (hole) 2.33 0.64 0.62 0.76 1.16

Band gap (eV) 1.31 1.15 1.23 1.20 1.13

Formula PBr7 NaSrP Zr6CoCl15 Ba3(InP2)2 Ba8P5Br

MP id 647343 13275 28734 19913 34034

Space group symbol Pnma 𝑃 ̅62𝑚 𝐼𝑚3̅𝑚 C2/c 𝐼4̅

m* (electron) 0.90 0.13 1.35 0.17 0.23

m* (hole) 3.76 0.12 0.82 0.36 0.18

Band gap (eV) 1.35 1.28 1.06 1.11 1.15
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Table S3. Computed parameters for the selected candidate at thickness of 500 nm and temperature 

of 300 K.

Formula P_max (W/m2) Jsc (A/m2) Voc (V) FF (%) SLME-DFT (%) SLME-ML (%)

Ba3(InP2)2 311.59 425.75 0.84 86.69 30.81 32.36

Ba8P5Br 315.96 412.33 0.88 87.10 31.58 33.41

Mg(InTe2)2 311.89 407.96 0.88 87.04 31.20 32.65

Ba2PCl 318.70 379.68 0.96 87.80 31.52 33.05

NaSrP 304.28 343.23 1.00 88.31 30.88 33.25

GaAs 289.38 392.09 0.85 86.68 28.91 29.38
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Table S4. Representative values for typical photovoltaic materials

Formula Jsc(A/m2) Voc(V) FF(%) Efficiency(%
)

Ref.

Si 426 0.7434 86.2 27.3 15

InP 311.5 0.939 82.6 24.2 16

CIGS 395.8 0.734 80.4 23.35 17

CIGSSe 395.5 0.6834 75.1 20.3 18

CZTSSe 379.0 0.5109 69.5 13.45 19

CZTS 217.7 0.7083 65.1 10 20

GaInP/GaInAsP//Si 127 3.309 86 36.1 21
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Table S5. The decomposition paths and the corresponding decomposition enthalpies (ΔH).

Composition Decomposition Path ΔH (meV/atom)

(1) SrP + Na  NaSrP -140

(2) NaP + Sr  NaSrP -545

(3) SrP2 + Na2Sr  NaSrP
1
2

1
2

-408

(4) Sr3P2 + Na3P  NaSrP
1
3

1
3

-71

(5) Sr3P4 + Na2Sr + Na  NaSrP
1
4

1
4

1
2

-262

(6) SrP3 + Na2Sr + Sr  NaSrP
1
3

1
2

1
6

-517

NaSrP

(7) Sr3P14 + Na2Sr + Sr  NaSrP
1
14

1
2

4
14

-614

(1) BaCl2 + Ba3P2  Ba2PCl
1
2

1
2

-101

Ba2PCl

(2) Ba3PCl + Ba3P2  Ba2PCl
1
3

1
3

-86

(1) 2InP + Ba3P2  Ba3(InP2)2 -160

(2) InP3 + Ba3In + P  Ba3(InP2)2 -685

(3) BaIn2P2 + 2BaP  Ba3(InP2)2 -280

(4) BaP3 + 2BaIn + P  Ba3(InP2)2 -337

(5) BaP2 + BaIn2P2 +Ba  Ba3(InP2)2 -206

(6) Ba3P4 + 2In  Ba3(InP2)2 -58

Ba3(InP2)2

(7) BaIn2 + 2BaP2  Ba3(InP2)2 -97

(1) In2Te3 + MgTe  Mg(InTe2)2 -18

(2) MgIn + InTe + 3Te  Mg(InTe2)2 -367

(3) Mg2In + InTe + Te  Mg(InTe2)2

1
2

3
2

1
2

-326Mg(InTe2)2

(4) Mg3In + InTe + Te  Mg(InTe2)2

1
3

5
3

7
3

-313

(1) Ba2PBr + Ba5P4 + Ba  Ba8P5Br -40

(2) Ba2PBr + 2BaP2 + 4Ba  Ba8P5Br -344Ba8P5Br

(3) Ba2PBr + Ba3P4 + 3Ba  Ba8P5Br -214
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