1	Supporting Information
2	Hydrogel thermocells with enhanced thermopower induced by thermosensitivity
3	Na Tang ^a , Jiayan Gong ^a , Qiao Zhang ^a , Yunfei Zhang ^a *, ChakYin Tang ^b , ChiPong Tsui ^b ,
4	Feipeng Du ^a *
5	^a School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan
6	430205, People's Republic of China
7	^b Department of Industrial and Systems Engineering. The Hong Kong Polytechnic University,
8	Hung Hom, Hong Kong, People's Republic of China
9	*Corresponding authors: zyf3006@126.com (Y.F. Zhang); hsdfp@163.com (F.P. Du)
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	

Fig. S1 The S_e value of $N_0A_{10}F_{0.3}$ doped with various concentrations of $Fe(CN)_6^{3-/4-}$

4 Fig. S2 SEM images of p(NIPAAm-co-Am) samples. (a) $N_{10}A_0F_0$. (b) $N_{9.5}A_{0.5}F_0$. (c) $N_9A_1F_0$

Fig. S3 (a) EDS mapping of p(NIPAAm-co-Am). (b) Fe, (c) K, (d) O, (e) N, and (f) C
element distribution

Fig. S5 Temperature- and composition-dependent transmittance of p(NIPAAm-co-Am)
 hydrogels at 700 nm

32 36 Temperature (°C)

Fig. S6 Temperature dependent transmittance of of N₉A₁F_{0.3}

Fig. S7 Optical images of N₀A₁₀F_{0.3} in deionized water at room temperature for different
 soaking times

Fig. S8 Self-made ionic Seebeck coefficient measurement setup: The red and blue parts
represent the heat source. The temperature and voltage are recorded by K-type thermocouple
and voltage meter.

7 Fig. S9 Optical image and ion diffusion schematic of $N_9A_1F_{0.3}$ when a. T < LCST and b. T >

LCST

3 Fig. S10 The plot of $\Delta V - \Delta T$ curves of p(NIPAAm-co-Am) hydrogel TECs. (a) N₁₀A₀F_{0.3}. (b) 4 N_{9.5}A_{0.5}F_{0.3}. (c) N₉A₁F_{0.3}. (d) N_{8.5}A_{1.5}F_{0.3}.

Fig. S11 The outpower density of $N_9A_1F_{0.3}$ hydrogel TEC at $\Delta T = 5$ K

2 Fig. S12 Heating curve of TEC at a $\Delta T = 30$ K and the cold end temperature of 20 °C

 Table S1 The formulations for preparing composite hydrogels.

Dm	NIPAAm	AAm	MBAA	APS	TEMED	[Fe(CN) ₆] ^{3_/4_}
Kill	(g)	(g)	(g)	(g)	(µL)	(M)
$N_{10}A_0F_0$	2.26	0	0.0032	0.016	20	0
$N_{9.5}A_{0.5}F_0$	2.148	0.07	0.0032	0.016	20	0
$N_9A_1F_0$	2.04	0.14	0.0032	0.016	20	0
$N_{8.5}A_{1.5}F_0$	1.92	0.21	0.0032	0.016	20	0
$N_0A_{10}F_0$	0	1.42	0.0032	0.016	20	0
$N_{10}A_0F_{0.3}$	2.26	0	0.0032	0.016	20	0.3
$N_{9.5}A_{0.5}F_{0.3}$	2.148	0.07	0.0032	0.016	20	0.3
$N_{9}A_{1}F_{0.3}$	2.04	0.14	0.0032	0.016	20	0.3
$N_{8.5}A_{1.5}F_{0.3}\\$	1.92	0.21	0.0032	0.016	20	0.3
$N_0 A_{10} F_{0.3}$	0	1.42	0.0032	0.016	20	0.3

Table S2 Properties comparison of recent hydrogel TECs

Redox couple	Matrix	Stress (kPa)	Strain (%)	S _e (mV K ⁻¹)	Power density (μW m ⁻²)	Ref.
I^{-}/I_{3}^{-}	PVA/Betaine	/	600	1	3	1
Fe(CN) ₆ ^{3-/4-}	Gelatine/CBP	/	/	1.27	145.3	2
Fe(CN) ₆ ^{3-/4-}	PVA	120	220	1.05	26.7	3
Fe(CN) ₆ ^{3-/4-}	PVA/Gelatin	560	240	1.02	1.2	4
$Fe^{2+/3+}$	PVA/Gelatin	380	320	1.09	2.8	5
Fe(CN) ₆ ^{3-/4-}	PA/PEI/PAAM	/	/	1.26	1.47	6
$Fe(CN)_{6}^{3-/4-}$	PNIPAM/AAM	36	580	2.60	157	This work

1 References

- 2 1 Z. Wang, N. Li, X. Yang, Z. Zhang, H. Zhang and X. Cui, *Microsyst. Nanoeng.*, 2024, 10,
- 3 55.
- 4 2 Z. Xu, S. Lin, Y. Yin and X. Gu, Chem. Eng. J., 2024, 493, 152734.
- 5 3 Y. Jiang, H. Ye, S. Zhang, Y. Pan, Z. Huang, H. Li, J. Guo and C. Zhu, M. Yuan, B. Dai, J.
- 6 Li, W. Yang, L. Gao, Y. Xie, *Nano Energy*, 2024, **131**, 110329.
- 7 4 C. Bai, X. Li, X. Cui, X. Yang, X. Zhang, K. Yang, T. Wang and H. Zhang, Nano Energy,
- 8 2022, **100**, 107449.
- 9 5 X. Li, J. Li, T. Wang, S.A. Khan, Z. Yuan, Y. Yin and H. Zhang, ACS Appl. Mater.
- 10 Interfaces, 2022, 14, 48743–48751.
- 11 6 J. Shen, C. Yang, Y. Ma, M. Cao, Z. Gao, S. Wang, J. Li, S. Liu, Z. Chen and S. Li, EcoMat,
- 12 2023, **6**, e12428.