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27 1.1. Electrochemical active surface area (ECSA) calculation

28 The electrochemically active surface area (ECSA) of the prepared materials were analyzed 

29 by calculating the double-layer capacitance (Cdl), which was derived from cyclic 

30 voltammetry (CV) plots in the non-Faradaic area, from 0.1 to 0.2 V (vs. Hg/HgO), at (10 - 

31 50 mV s-1) scan rates. The capacitive current densities, obtained by averaging the slopes of 

32 both the anodic and cathodic segments of the linear fit, were used for these measurements. 

33 The slope of the linear fit provided the Cdl value, and the specific capacitance was 

34 determined to be 60 μFcm⁻². also, the ECSA of the catalysts in their current state can be 

35 determined using the equation . 
𝐸𝐶𝑆𝐴 =  

𝐶𝑑𝑙

𝐶𝑠

36 1.2. Turnover frequency (TOF) calculations

37 The turnover frequency (TOF) measurements for various catalysts were conducted. TOF, 

38 which represents the reaction rate per active site, is utilized to compare the intrinsic activity 

39 of different prepared materials. The TOF value was analyzed from the equation below;

40                                                                  TOF=             

𝐽𝐴
4𝐹𝑁𝑠

41   J represents the current density at the specified overpotential, A denotes the material 

42 surface area, F is the Faraday constant (96485 C mol-1), and Ns signifies the number of 

43 active sites per sample. For the redox reaction in 1.0 M KOH + 0.5 M urea, the value of 

44 Ns was determined using cyclic voltammetry (CV) curves at different scan rates. The slope 

45 was derived from the plot of peak current versus scan rate as described below.

46                                                             slope =
 
𝑛2𝑥𝐹2𝐴𝑥𝑁𝑠

4𝑅𝑇

47

48 Here, n represents the number of electrons transferred (n = 1), F refers to the Faraday 

49 constant, A indicates the surface area of the sample, Ns stands for the surface concentration 

50 of active sites, while R and T are the gas constant and temperature, respectively.
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51

52

53 1.3. In situ IRRAS Spectroscopy

54 In this study, an A-type mercuric cadmium telluride (MCT) detector was used in 

55 conjunction with a Nicolet iS50 spectrometer to perform in-situ infrared reflection-

56 absorption spectroscopy (IRRAS). The working electrode, a Sevac@NiSe-NS catalyst, was 

57 positioned on the Si face-angle within an electrochemical three-electrode cell. This setup 

58 included a platinum wire as the counter electrode and an Ag/AgCl electrode as the 

59 reference electrode. The urea oxidation reaction (UOR) experiments were carried out using 

60 1 M KOH + 0.5 M urea. The working electrode was placed against the flat surface of a 

61 ZnSe hemisphere for the measurements.
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89 Fig. S1. (a, b) SEM images of Ni(OH)2
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104 Fig. S2. (a, b) SEM images of NiSe
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111

112
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114

115
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117

118

119 Fig. S3. (a,b,c) CV curves of Sevac@NiSe-NS, NiSe and Ni(OH)2 recorded at different scan 

120 rates for UOR.
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123

124

125

126

127

128

129

130

131 Fig. S4. Polarization curves normalized by electrochemical active surface area.
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142

143
144           Fig. S5.    Nyquist plots for Ni (OH)2, NiSe and Sevac@NiSe-NS
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164

165
166 Figure. S6a Nyquist plots at different potential (S6b) Bode plots were recorded at various 

167 potentials (versus RHE) for SeVac@NiSe-NS during the UOR.
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186 Fig. S7. LSV curve of Sevac@NiSe-NS after 1000 CV cycles.
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203

204           Fig. S8.    CV scan for Sevac@NiSe-NS showing its electrochemical reconstruction.
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220

221 Fig. S9. XRD pattern of Sevac@NiSe-NS after UOR reaction
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239

240 Fig. S10. (a, b) SEM images of Sevac@NiSe-NS after UOR reaction.
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255 Fig. S11. HRTEM image of Sevac@NiSe-NS after stability
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274 Fig. S12. Insitu-IRRAS spectra of NiSe.

275

276

277

278

279

280



16

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296
297  Fig. S13. (a and b) XRD and TEM after 1000 cycles.
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304

305

306

307

308

309

310

311
312

313 Fig. S14 UOR performance of NiCo2O4, NiFe2O4 and Sevac@NiSe-NS.

314 We have conducted a comparative study of NiCo2O₄ and NiFe2O₄ with Sevac@NiSe-NS. 

315 The results clearly demonstrate that Sevac@NiSe-NS exhibits significantly enhanced 

316 performance over the other samples. The superior activity can be attributed to the intrinsic 

317 properties of Se-based materials, which were strategically selected for the UOR reaction 

318 due to their unique electronic structure and excellent electrical conductivity. Unlike Fe and 

319 Co, Se features a higher metallic character and lower electronegativity, leading to improved 

320 intrinsic conductivity and a narrower bandgap. These advantages greatly enhance charge 

321 transfer efficiency and accelerate reaction kinetics, ultimately boosting the overall catalytic 

322 performance.
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325

326

327

328

329

330 Scalability Testing of Sevac@NiSe-NS for UOR

331 To assess the scalability, the performance of the large-scale synthesized Sevac@NiSe-NS 

332 catalyst was evaluated under same electrochemical testing conditions as the small-scale. 

333 As shown in Fig. S15, the electrocatalytic activity for UOR remained almost the same 

334 despite the increased synthesis scale, indicating excellent reproducibility and consistency.

335 The catalyst exhibited comparable overpotentials and current densities suggesting that the 

336 active sites remained effective even after upscaling. Also, the catalyst layer stayed well 

337 attached to the nickel foam and didn’t show any peeling or cracks.

338 These results confirm the robustness of our synthesis protocol for scale-up applications. 

339 The ability to retain catalytic performance at higher loadings demonstrates the potential of 

340 Sevac@NiSe-NS for practical deployment in industrial-scale UOR systems.

341

342 Fig. S15 UOR performance comparison of Sevac@NiSe-NS prepared in small quantity 

343 synthesis (black color) and large quantity synthesis (red color) synthesis. LSV curve for 

344 small quantity synthesis is taken from Fig.3a.
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345

346

347

348

349 The lateral size distribution of Sevac@NiSe-NS was evaluated with scanning electron 

350 microscopy (SEM) with a nanosheet structure of 191-230 nm lateral size. This relatively 

351 narrow size distribution indicates a uniform morphology, which is beneficial for consistent 

352 electrochemical behavior. Moreover, such uniformity supports uniform dispersion on the 

353 Ni foam substrate, ensuring efficient exposure of active sites and facilitating optimal mass 

354 and electron transport, ultimately enhancing the electrode's overall performance.

355

356

357 Fig. S16 (a) SEM image of Sevac-NiSe-NS (b) Lateral size distribution histogram of Sevac-

358 NiSe-NS in which the sizes of 80 nanosheets were measured for lateral size distribution 

359 analysis.
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365

366

367 To gain a comprehensive understanding of its rate capability and versatility, intermediate 

368 current densities should also be evaluated. For this purpose, we have tested the material in 

369 both 1 M KOH and 1 M KOH + 0.5 M urea. The electrode exhibits excellent stability in 1 

370 M KOH with negligible degradation, while in 1 M KOH + 0.5 M urea, a slight degradation 

371 is observed. This enhanced stability in 1 M KOH is attributed to the absence of urea 

372 oxidation intermediates that can block active sites. In contrast, during UOR, the formation 

373 of by-products such as cyanate and carbonate can lead to partial surface blockage and mild 

374 structural degradation. Additionally, the complex multistep nature of UOR introduces 

375 higher reaction overpotentials, contributing to performance decline. The stability 

376 difference may also come from the competitive adsorption between urea and hydroxide 

377 ions, affecting the catalyst's active surface dynamics. Evaluating performance across 

378 varying conditions helps identify limitations and ensures broader applicability of the 

379 electrode.

380

381 Fig. S17 Chronopotentiometry test of Sevac@NiSe-NS at a current density of 500 mA cm−2 

382 in 1 M KOH+0.5 M urea and 1 M KOH.
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385

386

387

388

389

390 It is possible to control the content of Se vacancies in Sevac@NiSe-NS using sodium 

391 borohydride (NaBH₄) as a reducing agent. The reaction conditions of NaBH₄, particularly 

392 the reaction time, can influence the extent of selenium reduction and the formation of Se 

393 vacancies. To investigate this effect, we prepared samples with different reduction times 

394 Sevac@NiSe-NS-30, Sevac@NiSe-NS-60, and Sevac@NiSe-NS-90, and found that 

395 Sevac@NiSe-NS-60 exhibited better performance compared to the others.

396

397 Fig.S18 UOR performance of Sevac@NiSe-NS-30, Sevac@NiSe-NS-60 and Sevac@NiSe-

398 NS-90.
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402

403

404
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406

407

408

409

410

411
412 Fig. S19 UOR performance comparison of Sevac@NiSe-NS (black color) and (red color) 

413 for NiSe-NP. LSV curve for Sevac@NiSe-NS is taken from Fig.3 a.
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437 Fig. S20 SEM image of Sevac@NiSe-NP.
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447

448
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451

452
453 Fig. 21 UOR performance of Sevac@NiSe-NP.
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462

463

464

465

466

467

468

469

470

471

472

473

474

475

476 Table S1. Performance comparison of different UOR catalysts. All electrochemical 
477 activities were obtained from 1 M KOH+ 0.5 M urea. 

Catalysts Potential 
@100
(mA cm-2)
V vs. RHE

Tafel slope 
(mV dec-1)

Stability Reference

Sevac@NiSe-NS/NF 1.40 35.1 40 h This work
Ni-WOx 1.42 39 10 h [1]
NCVS-3 1.55 37.3 10 h [2]
O-NiMoP/NF 1.41 36.5 40 h [3]
Rh/NiV-LDH 1.38 36 36 h [4]
NC-PB@CNT 1.41 62 30 h [5]
P-CoNi2S4 1.55 40 32 h [6]
Ni(OH)2 (Ovac-V-
Ni(OH)2)

1.47 29.12 35 h [7]
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482

483

484

485

486

487

488

489

490

491

492

493

494

495 Table S2. Cycling Performance comparison of different UOR catalysts. All 
496 electrochemical activities were obtained from 1 M KOH+ 0.5 M urea. 

497

Catalysts Current 
density 300

   Cycles performance Reference

Sevac@NiSe-NS/NF   300 1000 Excellent This work
Cu2Se-based 250 500 Poor [8]
Zn@Ni-MOF 300 800 Good [9]
NiSe2 nanowrinkles 200 500 poor [10]
Ni-WOX 200 500 Good [11]
P-CoNi2S4 300  700 Good [12]
Cu0.5Ni0.5/NF  250   500 Good [13]
CoMn/CoMn2O4 300  750 Good [14]
NiSOX  200   500  Poor [15]
Mo-NiS 200   500  Poor  [16]

498

499
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