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Experimental section

Materials. Acrylonitrile (AN) was passed through an Al,O; column before
polymerization to eliminate the inhibitor. 2,2'-Azobis[2-(2-imidazolin-2-yl)propane]
dihydrochloride (AIBI) was purchased from Shandong Xiya. Acrylamide (AM) was
obtained from Shandong Sainuo. Vanadium oxide (V,0s, 99%) was purchased from
Macklin. Zn (thickness 100 pm), Cu sheets (thickness 100 pum), carbon cloth,
polyvinylidene difluoride (PVDF), N-methyl-2-pyrrolidone (NMP) and acetylene
black were purchased from Canrd Technology Co. Ltd. Zinc triflate (98%), or
(Zn(OTHY),), was obtained from Shanghai Aladdin.

Synthesis of PMN.,. In 50 mL Schlenk flasks, AM (3.79 g, 4.21 g, 4.62 g, 4.79 g,
4.81 g, 4.85 g), AN (1.21 g,0.79 g, 0.38 g, 0.21 g, 0.19 g, 0.15 g), AIBI (0.125 g),
H,0 (27 mL) and C,HsOH (18 mL) were mixed under stirring for 30 min. Then the
flask was sealed and purged with high-purity nitrogen for 30 min, and the reaction
was carried out in oil baths at 50°C for 8 h. After concentrating the solution, these
products were precipitated three times in ethanol. These final products were dried in a
vacuum oven at 60°C for 24 h before use.

Preparation of electrolyte solution. By dissolving stoichiometric Zn(OTf), in
deionized water, a 3 M pristine electrolyte aqueous solution was prepared. The PMN.
«-containing electrolytes solution were prepared by adding 0.05 wt.%, 0.10 wt.%, 0.15
wt.%, 0.20 wt.% and 0.25% wt.% PMN into 3 M Zn(OTf), aqueous solution. The
weight percentage (wt.%) represents the weight percentage of PMN., in electrolyte.

Preparation of Na,V¢06'1.5H,0 (NVO) Cathode. According to published
literatures!?, V,05 cathode material was synthesized. The 3 g of V,05 were dissolved
in 45 mL of 2 M sodium chloride (NaCl) aqueous solution and stirred for 72 h. The
orange-red gel was obtained, and then washed three times with deionized water and

ethanol to remove excess V,0s. The resulting product was dried in an oven at 60°C
for 12 h.

Material characterization. The molecular weight of copolymers was determined by
ambient gel chromatography (Agilent PL-GPC50). Fourier transform infrared
spectroscopy (FTIR) was recorded on the Thermo Fisher Scientific Nicolet 1S20
instrument. X-ray diffraction (XRD) measurements were performed on a Rigaku
Ultima IV diffractometer. The morphologies and element mapping were observed on
a ZEISS EVO/MA 15 scanning electron microscope (SEM) with an energy dispersive
spectroscopy (EDS). The surface roughness morphology was obtained by the Bruker
Atomic Force Microscope (AFM). The surface compositions of Zn anodes were
investigated on Nexsa X-ray photoelectron spectroscopy (XPS). The ion conductivity
of PMN_,-containing electrolyte at different concentrations was collected through a
conductivity meter (YOKE, DDS-307A). Proton nuclear magnetic resonance spectra
("H NMR) were obtained on a Bruker AVANCE III HD 400 MHz spectrometer. The
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hydrodynamic diameters (D) of copolymers were measured on Brookhaven
Instruments BI-200SM laser scatterometer with a digital correlator (BI-9001). The
contact angles between Zn-metal and different electrolytes were measured on an
Dataphysics OCA2S5 optical contact angle goniometer. The specific viscosity (7,) of
PMN._, with different concentrations in aqueous solution was measured by Ubbelohde
viscometer. The average capillary diameter of the Ubbelohde viscometer used is 0.41
mm. According to Poiseuille equation:

Np = t/to ~ 1 (S1)

where ¢ 1s the outflow time of PMN_s solution, #, is the outflow time of water, the 7,
can be calculated.

Electrochemical Tests. Zn-Zn symmetric cell, Zn-Cu asymmetric cell and Zn-NVO
full battery were assembled with CR2032 coin, glass fiber as separator, 3 M Zn(OTf),
as electrolyte, Zn, Cu and NVO coated carbon cloth as positive electrode with or
without copolymer additive. The preparation of NVO cathode is as follows. NVO,
acetylene black and polyvinylidene fluoride (PVDF) were compounded into slurry at
a mass ratio of 7:2:1. The slurry was coated on a carbon cloth (0.35 mm thick) with a
scraper, and then it was cut into a round piece with a diameter of § mm, and vacuum
dried at 60°C for 24 h. The cycling performance of battery was tested by a Neware
battery cycler (CT-4008T-5V10mA-164, Shenzhen, China). Tafel curves were
obtained from Zn-Zn symmetric cells using pristine and PMN -containing
electrolytes. Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) and were
carried on CHI660E electrochemical workstation. The chronoamperometry (CA) of
Zn-Zn symmetric cells were recorded at a scan rate of 10 mV s*! and an overpotential
of -150 mV. In-situ electrochemical impedance spectra (EIS) were carried on a
Gamry Reference 3000 electrochemical workstation. The Zn-NVO battery was tested
in 3 M pristine electrolyte and PMN_s-containing electrolyte with NVO as the positive
electrode and Zn-metal as the negative electrode.

Figures



Fig. S1. The dissolution state of PMN_; dissolved in pristine electrolyte with different
compositions and concentrations.
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Fig. S2. Cycling performance of Zn-Zn symmetric cells using PMN_;-containing
electrolyte at a current density of 10 mA c¢cm with a capacity of 1 mAh cm-.
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Fig. S3. '"H NMR spectrum of PMN_s with peak assignments.
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Fig. S4. FTIR spectrum of PMN_s with peak assignments.
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Fig. S5. Electrochemical impedance spectra (EIS) of Zn-Zn symmetric cells with
PMN, electrolyte were obtained between 303 K and 343 K to derive the Arrhenius
curve and activation energy E,.
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Fig. S6. (a) Electrochemical impedance spectra and (b) chronoamperometry (CA) of
Zn-Zn symmetric cells with PMN_s-containing electrolyte.

[,=3.52*10 A, I=3.13*107 A, Rp=957.1 Q, R=1026 Q. By the formula,

t o4 =18V = IgR)/I(AV - IR )

the Zn?* transference number (tz,»+) can be calculated as 0.87.
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Fig. S7. lonic conductivity of PMN.s-containing electrolytes at different
concentrations.
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Fig. S8. FTIR spectra of different PMN_s concentration electrolytes in H,O.

The FTIR spectra shows that after adding pristine electrolyte to pure water, the O-H
stretching vibration happened a blue shift and the intensity decreased. This indicates
that the hydrogen bond network between water molecules is disrupted and the
hydrogen bonding interaction is weakened. While after introducing PMN s, a red shift
in the O-H stretching vibration can be observed. This is due to the enhanced hydrogen
bonding interactions between water molecules in electrolyte solution, indicating an

increase in the amount of free water.
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Fig. S9. 'H NMR spectra of pristine and PMN _s-containing electrolytes with different
PMN_s amounts in D,0.

The '"H NMR spectra shows that the chemical shift moved from 4.700 ppm to 4.722
ppm in pristine electrolyte solution of 3 M Zn(OTf),, which indicates that the
coordination of Zn>" with D,O weakens the electron density of D,O molecules.
Compared with pristine electrolyte solution, the chemical shift of PMN_s-containing
electrolyte changed from 4.722 ppm to 4.719 ppm, and the chemical shift decreases
with the increase of concentration, indicating that the coordination of Zn** with water

is inhibited.
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Fig. S10. FTIR spectra of PMN._, Zn sheets with soaked for 7 days in PMN_s-
containing electrolyte, and unsoaked Zn.

The Zn sheet soaked in electrolyte PMN s-containing has similar spectrum to original
PMN_s, indicating that the copolymer additive has adsorption effect on Zn surface. In
addition, the blue shift of C=0O peak occurs after the original Zn sheet soaking in
PMN s-containing electrolyte, which is due to the interaction between Zn and the
polar amide groups in PMN_s, demonstrating the chemical adsorption of PMNs

additive on Zn sheet surface.

Fig. S11. Energy dispersive spectroscopy (EDS) mapping of Zn sheet soaked in PMN.
s-containing electrolyte.

Fig. S12. SEM images of Zn sheet soaking in (a) pristine electrolyte and (b) PMN._s-
containing electrolyte for 7 days under 25°C.

Lots of irregular dendrites appeared on the surface of Zn sheet after soaking in
pristine electrolyte. While in PMN_s-containing electrolyte, the surface of Zn sheet is

smooth and there are scattered small particles.
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containing electrolyte after 1~5 days of laying aside.

The impedance of Zn-Zn symmetric cell with pristine electrolyte increases as the
increase of laying aside time. This is due to the accumulation of by-products that
formed by the reaction of Zn anode surface with water in pristine electrolyte. It also
indicates that it possesses a persistently unstable Zn anode/electrolyte interface. After
introducing PMN_s additive, the Zn-Zn cell exhibits stable impedance with the laying
aside time increases. It can attribute to the dynamic layer formed by the adsorption of
PMN_ copolymer macromolecules on Zn anode surface, which blocks water

molecules and thereby reduces side-reactions, leading to a stable Zn anode/electrolyte

interface.

11

1500




s T -2

PMN c=0

Soaked Zn

Cycled Zn ¢

Electrolyte

Transmittance (a.u.)

Cycled Zn 4,

Electrolyte ,
3500 3000 2500 2000 1500 1000

Wavenumber (cm™)

Fig. S14. FTIR spectra of Zn anode and electrolyte after 50 cycles at 5 mA c¢cm and
10 mA cm? current densities using Zn-Zn symmetric cells with PMN_s-containing
electrolyte.

Both cycled Zn anode and electrolyte are exhibiting similar characteristic peaks with
those of the original PMN_s copolymer and soaked Zn. This indicates that the
characteristic groups structure of PMN_; remains intact even under high current
densities. Besides, in the FTIR spectra of Zn anode cycled at 5 mA ¢cm™ and 10 mA
cm2, the characteristic peaks of N-H and C=0 exhibit a blue shift compared to the
original PMN_s copolymer. At 5 mA cm™ current density, the N-H peak shifted from
3185.22 em! to 3236.07 cm! and C=0 peak shifted from 1603.21 cm! to 1650.54
cm’'. At 10 mA cm?, the peaks of N-H and C=O shifted from 3185.22 cm! to
3450.27 cm’! and from 1603.21 cm! to 1613.68 cm’!, respectively. This can be
attributed to the chemical adsorption of PMN_s macromolecules on the surface of Zn

anode.
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Fig. S15. Cycling performance of Zn-Zn symmetric cells with PMN_s-containing
electrolyte at (a) 5 mA cm? and (b) 10 mA cm current densities, respectively.

The Zn-Zn symmetric cells using the same PMN_s-containing electrolyte with FTIR

tests also possess good cycling stability under high current densities of 5 mA c¢cm2 and
10 mA cm™.
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Fig. S16. XPS depth profile for O 1s, S 2p, F 1s, and N 1s of Zn-metal anode surface
after 50 cycles in pristine electrolyte at a current density of 5 mA c¢m? with a capacity
of ImAh cm™2.
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Fig. S17. Evolution of the SEI compositions on surface of the Zn-metal anodes

circulating in PMN_-containing and pristine electrolyte as the etching depth

increases.
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Fig. S18. Tafel plots of Zn-metal anodes tested in pristine and PMN_s-containing
electrolyte.

Compared with pristine electrolyte, the corrosion current density decreased from -
5.4686 mA cm? to -5.5765 mA cm? and the corrosion potential increased from -
0.0010 V to 0.0010 V after the addition of PMN_s;, which indicates that the corrosion

reaction on Zn anode is inhibited and the PMN_5 additive has corrosion resistance.
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Fig. S19. (a) Hydrogen evolution reaction (HER) and (b) oxygen evolution reaction

(OER) curves of different electrolytes determined using LSV at a scan rate of 1 mV s
1

It can be seen from the figure that PMN_s can reduce the initial potential of HER
(from —0.141 V to —0.285 V) and increase the initial potential of OER (from 2.64 V to
2.68 V), indicating that it can inhibit the occurrence of HER and OER.

15



0.6
——PMN,
0.4 Pristine
2 0.2
(]
o
8
o 0.0 -0.12
>
-0.2 //’—
025 5mA cm? 1 mAh cm?
-0.4

00 03 06 09 12 15
Capacity (mAh)

Fig. S20. Initial nucleation overpotentials of Zn plating on Cu electrodes in Zn-Cu
asymmetric cells at 5 mA cm-? with different electrolytes.

Compared with the pristine electrolyte, the initial nucleation overpotential increased
by 0.13 V after adding PMN_s;, which means that more fine zinc-ion nuclei are formed

in the electrolyte containing PMN _s and additive enables the deposition more uniform.
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Fig. S21. Measurement setup of the in-situ electrochemical impedance spectroscopy
during continuous Zn?>* deposition in Zn-Zn symmetrical cells. Each discharge
process is separated by a 3 minutes interval, with a total measurement time of 120 min
(20 cycles).
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Fig. S22. In-situ EIS of Zn-Zn symmetric cells using (a) pristine and (b) PMN_s-
containing electrolyte during electro-plating of Zn?*. Each process last 3 min for
charging and 3 min for discharging. The total measurement time is 120 min (20

cycles).
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Fig. S23. The impedance plots of Zn-Zn cell after different cycles.

After a series of cycles, the impedance of cell showed no significant changes and
maintained a stable state, which is consistent with the results of dynamic in-situ EIS
tests. This indicates that after prolonged cycling, the Zn anode/electrolyte interface

remains in a stable state, and thus its impedance also remains stable.
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Table S1 Molecular weight of copolymers at different molar ratios.

Copolymer AM:AN M,
(mol: mol) (g/mol)
PMN 4 96:4 16812
PMN 5 95:5 18668

PMN ¢ 94:6 17017
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Table S2 Energy dispersive spectroscopy (EDS) compositions of Zn-metal anode
soaked in PMN_s-containing electrolyte.

Element Wt.% Atomic%
N 0.01 0.05
0] 10.50 32.06
F 0.07 0.18
S 1.16 1.77
Zn 88.26 65.94
Total 100.00 100.00
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Table S3 Comparison cycling performance of Zn-Zn symmetric cells with different

additives.
Electrolyte additive Current density Cycle life Ref.
(mA cm?, mAh cm?) (h)
Amino acid D-Phenylalanine
(DPA) 5,1 1200 3
1 M urea + 0.3 M LiOAc 55 435 4
Disodium succinate (SADS) 55 530 5
Protonated triglycine (ggg) 55 400 6
Maltose (Malt) 55 1080 7
Sulfolane (SL) 55 800 8
1,4-dioxane (DX) 55 1000 9
Quaternized lignin (QL80) 55 200 10
Tween-20 (TW20) 55 500 11
5,1 1840
PMN_; 10, 1 670 This work
20, 1 300

-
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