#### **Supporting Information**

# Synergizing Hydrazine Co-Crystal with Hydrazine Salt of TNAE: A Novel Strategy for Developing Highly Insensitive Explosives

Shreyasi Banik,<sup>a‡</sup> Vikas D. Ghule,<sup>b</sup> and Srinivas Dharavath<sup>a\*</sup>

<sup>a</sup>Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India. orcid.org/ 0000-0003-0511-0607. E-mail: srinivasd@iitk.ac.in

<sup>b</sup>Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra-136119, Haryana, India. orcid.org/0000-0002-0967-7777.

#### Table of Contents

| Entry                                      | Page No   |
|--------------------------------------------|-----------|
| General Methods and synthesis of compounds | S-2       |
| Crystal Structure Analysis for 2 and 3     | S-3-S-13  |
| NMR, Mass, IR, and DSC-TGA plots of 2      | S-13-S-15 |
| NMR, Mass, IR, DSC-TGA plot of <b>3</b>    | S-16-S-18 |
| Computational Details                      | S-18-S-22 |
| References                                 | S-22-S-23 |

#### **Experimental Procedures**

*Caution!* The compounds in this work are energetic materials that could potentially explode under certain conditions (e.g., impact, friction, or electric discharge). Appropriate safety precautions, such as the use of shields in a fume hood and personal protection equipment (safety glasses, face shields, earplugs, as well as gloves) should be always taken when handling these materials.

**General**. All reagents were purchased from AKSci or TCI or Merck in analytical grade and were used as supplied. <sup>1</sup>H, and <sup>13</sup>C{<sup>1</sup>H} NMR spectra were recorded JEOL DELTA (ECS) 500 (<sup>1</sup>H, 500 MHz) and <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, DMSOd6) nuclear magnetic resonance spectrometer. Chemical shifts for <sup>1</sup>H NMR and <sup>13</sup>C{<sup>1</sup>H} NMR spectra are given with respect to external (CH<sub>3</sub>)<sub>4</sub>Si (<sup>1</sup>H and <sup>13</sup>C). [D6] DMSO was used as a locking solvent unless otherwise stated. IR spectra were recorded using Zn-Se pellets with an ECO-ATR spectrometer (Bruker Alpha II). A single crystal of suitable dimensions was used for data collection. Diffraction intensities were collected on a Bruker APEX-II CCD diffractometer, with graphite monochromated Mo Ka (0.71073 Å) radiation at 100(2) K. Density was determined at room temperature by employing Anton Par Ultra5000 gas pycnometer. Decomposition temperatures (onset) were recorded using a dry nitrogen gas purge and a heating rate of 5 °C min<sup>-1</sup> on a thermogravimetric differential scanning calorimeter (TGA-DSC (SDT-650)). Impact and friction tester.

**1,1,2,2-tetranitroaminoethane (1):** Compound **1** was prepared according to the literature procedure.<sup>1,2</sup>

**Tetrahydaazinium** ethane-1,1,2,2-tetrayltetrakis(nitroamide) (2): 1,1,2,2tetranitroaminoethane (1) (0.270 g, 1 mmol) was dissolved in 5 mL of methanol, and to this 80% hydrazine monohydrate (0.3 mL, 4 mmol) was added dropwise at room temperature and the reaction mixture were stirred for 2 hrs at same temperature. The formed brown precipitate was collected by filtration and dried in air to afford desired products 2 in 56% yields (223 mg, 5 mmol). T<sub>d</sub>(onset): 120 °C. <sup>1</sup>H NMR (500 MHz, DMSO-d6): δ (ppm) 7.30 (s, 2H), 6.57 (s, 20H).<sup>13</sup>C {<sup>1</sup>H} NMR (126 MHz, DMSO-d6): δ(ppm) 89.68. IR (ATR, ZnSe, cm<sup>-1</sup>): 659, 716, 763, 815, 956, 1074, 1228, 1254, 1393, 1524, 1594, 3324. HRMS (ESI-QTOF) m/z: (M+2H<sub>3</sub>O)<sup>+</sup>: Calculated for C<sub>2</sub>H<sub>22</sub>N<sub>16</sub>O<sub>8</sub>: 437.2237; Found: 437.2365. Elemental analysis: (%) calculated for C<sub>2</sub>H<sub>24</sub>N<sub>16</sub>O<sub>9</sub>: C, 5.77; H, 5.81; N, 53.83. Found: C, 5.76; H, 5.68; N, 53.32.

Synthesis of 4,6-dihydrazineyl-5-nitropyrimidine (3): Compound 1 (270 mg, 1 mmol, 1 eq.) was taken in methanol at 50 °C (3 ml) and to this excess amount of 80% hydrazine monohydrate (1 mL, 20 mmol) was added. The mixture was stirred at same temperature for 6 hrs and cool down to room temperature. The solvent was evaporated under reduced pressure and isolated yellow coloured solid precipitate in 82% yield (326 mg, 8mmol). The formed precipitate was dissolved in the mixture of solvent methanol/water (1:1 ratio) and left to evaporate slowly at room temperature to obtain suitable crystals. T<sub>d</sub>(onset): 185 °C, <sup>1</sup>H NMR (500 MHz, DMSO-d6):  $\delta$  (ppm) 7.30 (s, 2H), 6.54 (s, 28H).<sup>13</sup>C {<sup>1</sup>H} NMR (126 MHz, DMSO-d6):  $\delta$ (ppm) 79.01. HRMS (ESI-QTOF) m/z: (M+H<sub>3</sub>O)<sup>+</sup>: Calculated for C<sub>2</sub>H<sub>30</sub>N<sub>20</sub>O<sub>8</sub>: 481.2634; Found: 481.2627.

IR (ATR, ZnSe, cm<sup>-1</sup>): 662,717, 757, 954, 1171, 1228, 1263, 1360, 1392, 1523, 1593, 3042, 3261, 3317. Elemental analysis: (%) calculated for  $C_2H_{30}N_{20}O_8$ : C, 5.20; H, 6.58; N, 60.58. Found: C, 5.59; H, 5.43; N, 60.86.



### X-Ray crystal structure details

Figure S1: Molecular Structure of 2.

 Table S1: Crystal data and structure refinement for 2.

| CCDC No.              | 2416101              |
|-----------------------|----------------------|
| Empirical formula     | $C_2H_{24}N_{16}O_9$ |
| Formula weight        | 416.37               |
| Temperature/K         | 100                  |
| Crystal system        | monoclinic           |
| Space group           | P2 <sub>1</sub>      |
| a/Å                   | 9.6301(8)            |
| b/Å                   | 9.1159(9)            |
| c/Å                   | 10.0144(9)           |
| $\alpha/^{\circ}$     | 90                   |
| β/°                   | 109.466(2)           |
| $\gamma/^{\circ}$     | 90                   |
| Volume/Å <sup>3</sup> | 828.88(13)           |
| Z                     | 2                    |

| $\rho_{calc}g/cm^3$                         | 1.668                                                  |
|---------------------------------------------|--------------------------------------------------------|
| $\mu/mm^{-1}$                               | 0.155                                                  |
| F(000)                                      | 440.0                                                  |
| Crystal size/mm <sup>3</sup>                | $0.33 \times 0.22 \times 0.22$                         |
| Radiation                                   | MoKa ( $\lambda = 0.71073$ )                           |
| $2\Theta$ range for data collection/°       | 4.314 to 56.676                                        |
| Index ranges                                | $-12 \le h \le 12, -12 \le k \le 12, -13 \le l \le 13$ |
| Reflections collected                       | 12490                                                  |
| Independent reflections                     | 4131 [ $R_{int} = 0.0684, R_{sigma} = 0.0604$ ]        |
| Data/restraints/parameters                  | 4131/1/276                                             |
| Goodness-of-fit on F <sup>2</sup>           | 1.051                                                  |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0426, wR_2 = 0.1117$                          |
| Final R indexes [all data]                  | $R_1 = 0.0470, wR_2 = 0.1165$                          |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.72/-0.36                                             |
| Flack parameter                             | 0.0(7)                                                 |

**Table S2:** Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **2**.  $U_{eq}$  is defined as 1/3 of of the trace of the orthogonalised  $U_{IJ}$  tensor.

| Atom | x          | У       | Z          | U(eq)   |
|------|------------|---------|------------|---------|
| O4   | 2868(2)    | 1409(2) | 1929.7(19) | 11.1(4) |
| O6   | 4148.0(19) | 7938(2) | 5206.5(19) | 11.3(4) |
| 05   | 2364(2)    | 8067(2) | 3143.1(19) | 10.8(4) |
| O8   | -239(2)    | 3524(2) | 4529(2)    | 13.0(4) |
| 01   | 5182(2)    | 6017(2) | 398.3(19)  | 10.6(4) |
| O2   | 4918(2)    | 3729(2) | 943(2)     | 14.8(4) |
| O3   | 1003(2)    | 1506(2) | -77(2)     | 12.9(4) |
| O7   | 112(2)     | 5810(2) | 4040(2)    | 14.0(4) |

| Atom | x       | У       | Ζ        | U(eq)   |
|------|---------|---------|----------|---------|
| 09   | 6316(2) | 8060(2) | 2478(2)  | 16.4(4) |
| N2   | 4561(2) | 5063(3) | 963(2)   | 8.5(4)  |
| N7   | 1420(2) | 3975(3) | 3520(2)  | 8.6(4)  |
| N4   | 1960(2) | 2184(3) | 973(2)   | 8.0(4)  |
| N5   | 3210(2) | 5871(3) | 4178(2)  | 8.6(4)  |
| N6   | 3204(2) | 7276(3) | 4134(2)  | 8.3(5)  |
| N12  | 8055(2) | 5978(3) | 5608(2)  | 9.8(4)  |
| N3   | 1880(2) | 3584(3) | 940(2)   | 8.3(4)  |
| N10  | 2945(2) | 8579(3) | 545(2)   | 11.0(4) |
| N8   | 436(2)  | 4454(3) | 4016(2)  | 8.6(5)  |
| N14  | 4030(2) | 6097(3) | 7361(2)  | 12.1(5) |
| N15  | 802(3)  | 3398(3) | -2325(2) | 12.9(5) |
| N1   | 3605(2) | 5532(3) | 1509(2)  | 8.9(4)  |
| N9   | 1554(3) | 8342(3) | -576(3)  | 17.7(5) |
| N13  | 2490(3) | 6475(3) | 7093(3)  | 17.3(5) |
| N11  | 6546(2) | 6098(3) | 4681(3)  | 13.4(5) |
| N16  | 351(3)  | 4846(3) | -1969(2) | 15.2(5) |
| C1   | 2966(3) | 4358(3) | 2111(3)  | 7.3(5)  |
| C2   | 2135(3) | 5141(3) | 2979(3)  | 7.5(5)  |

**Table S2:** Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **2**.  $U_{eq}$  is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

**Table S3:** Anisotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **2**. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| O4   | 11.8(8)         | 8.9(10)         | 10.2(8)         | 2.3(8)          | 0.6(7)          | 2.3(7)          |
| 06   | 12.8(8)         | 10.0(9)         | 7.9(8)          | -5.5(8)         | -1.1(6)         | -4.6(8)         |

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 05   | 15.1(8)         | 6.4(9)          | 8.7(8)          | 1.7(8)          | 0.9(6)          | 1.4(8)          |
| O8   | 13.7(9)         | 13.1(10)        | 13.5(9)         | 0.6(9)          | 6.4(7)          | -4.0(8)         |
| 01   | 14.1(9)         | 9.7(9)          | 9.5(8)          | 1.1(8)          | 5.7(7)          | -4.9(7)         |
| O2   | 20.1(10)        | 7.6(10)         | 20.1(10)        | 0.2(8)          | 11.4(8)         | 3.2(8)          |
| O3   | 14.2(9)         | 10.5(9)         | 10.8(8)         | -3.5(8)         | -0.3(7)         | -4.6(8)         |
| O7   | 19.2(10)        | 6.3(10)         | 20.3(10)        | -0.2(8)         | 11.6(8)         | 2.5(8)          |
| 09   | 23.9(10)        | 9.9(9)          | 14.7(9)         | 0.8(8)          | 5.5(7)          | -1.4(8)         |
| N2   | 8.8(10)         | 9.3(11)         | 7.2(10)         | -0.5(8)         | 2.5(7)          | -0.3(8)         |
| N7   | 9.4(10)         | 7.4(11)         | 9.6(9)          | -0.1(8)         | 4.1(8)          | -1.8(8)         |
| N4   | 9.3(9)          | 7.2(11)         | 7.3(10)         | -0.6(8)         | 2.3(8)          | -1.1(8)         |
| N5   | 10.6(10)        | 6.4(11)         | 8.5(10)         | -1.5(8)         | 2.6(8)          | -1.0(8)         |
| N6   | 7.6(9)          | 8.8(11)         | 7.9(10)         | -1.8(8)         | 1.8(8)          | -0.6(8)         |
| N12  | 9.6(9)          | 9.4(10)         | 9.7(9)          | 0.8(9)          | 2.3(8)          | 2.6(8)          |
| N3   | 9.5(10)         | 6.3(11)         | 8.3(9)          | -1.7(8)         | 1.6(8)          | -0.2(8)         |
| N10  | 10.4(10)        | 10.9(11)        | 11.4(10)        | -0.8(9)         | 3.3(8)          | -0.3(9)         |
| N8   | 9.6(10)         | 7.8(11)         | 6.5(9)          | -0.8(8)         | 0.0(8)          | -1.8(8)         |
| N14  | 11.6(10)        | 12.3(12)        | 10.5(10)        | -0.9(9)         | 1.3(8)          | -2.0(9)         |
| N15  | 12.5(10)        | 12.1(13)        | 11.6(10)        | 0.7(9)          | 0.7(8)          | 1.2(8)          |
| N1   | 9.7(10)         | 7.3(11)         | 9.8(10)         | 0.0(8)          | 3.6(8)          | 0.1(8)          |
| N9   | 10.4(10)        | 14.9(14)        | 22.3(12)        | -3.1(10)        | -1.7(9)         | 0.5(9)          |
| N13  | 14.4(11)        | 18.7(12)        | 18.5(11)        | 1.3(10)         | 5.2(9)          | 3.0(9)          |
| N11  | 7.7(10)         | 11.7(12)        | 16.9(11)        | 1.5(10)         | -0.9(8)         | -0.7(9)         |
| N16  | 16.5(11)        | 13.6(11)        | 15.3(11)        | -0.9(9)         | 4.9(9)          | 1.5(9)          |
| C1   | 7.8(11)         | 7.0(12)         | 6.2(11)         | -1.2(9)         | 1.0(9)          | -0.9(9)         |

**Table S3:** Anisotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **2**. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

**Table S3:** Anisotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **2**. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| C2   | 8.7(11)         | 5.7(12)         | 7.2(11)         | 1.5(9)          | 1.2(9)          | -0.2(9)         |

| Table S4: | Bond I | Lengths | for | 2. |
|-----------|--------|---------|-----|----|
|-----------|--------|---------|-----|----|

| Atom | Atom | Length/Å | Atom | Atom | Length/Å |
|------|------|----------|------|------|----------|
| O4   | N4   | 1.274(3) | N4   | N3   | 1.278(3) |
| O6   | N6   | 1.302(3) | N5   | N6   | 1.281(3) |
| 05   | N6   | 1.274(3) | N5   | C2   | 1.459(3) |
| 08   | N8   | 1.275(3) | N12  | N11  | 1.445(3) |
| 01   | N2   | 1.289(3) | N3   | C1   | 1.466(3) |
| O2   | N2   | 1.265(3) | N10  | N9   | 1.449(3) |
| O3   | N4   | 1.301(3) | N14  | N13  | 1.458(3) |
| 07   | N8   | 1.277(3) | N15  | N16  | 1.471(3) |
| N2   | N1   | 1.290(3) | N1   | C1   | 1.461(3) |
| N7   | N8   | 1.283(3) | C1   | C2   | 1.539(3) |
| N7   | C2   | 1.465(3) |      |      |          |

## Table S5: Bond Angles for 2.

| Atom | Atom | Atom | Angle/°  | Atom | Atom | Atom | Angle/°    |
|------|------|------|----------|------|------|------|------------|
| 01   | N2   | N1   | 117.6(2) | N4   | N3   | C1   | 116.1(2)   |
| 02   | N2   | 01   | 118.3(2) | 08   | N8   | O7   | 118.3(2)   |
| 02   | N2   | N1   | 124.1(2) | 08   | N8   | N7   | 118.1(2)   |
| N8   | N7   | C2   | 113.3(2) | 07   | N8   | N7   | 123.6(2)   |
| O4   | N4   | 03   | 117.9(2) | N2   | N1   | C1   | 113.0(2)   |
| 04   | N4   | N3   | 126.4(2) | N3   | C1   | C2   | 107.97(19) |

### Table S5: Bond Angles for 2.

| Atom | Atom | Atom | Angle/°  | Atom | Atom | Atom | Angle/°    |
|------|------|------|----------|------|------|------|------------|
| N3   | N4   | 03   | 115.7(2) | N1   | C1   | N3   | 108.0(2)   |
| N6   | N5   | C2   | 115.7(2) | N1   | C1   | C2   | 105.30(18) |
| 05   | N6   | 06   | 117.9(2) | N7   | C2   | C1   | 105.65(19) |
| 05   | N6   | N5   | 125.9(2) | N5   | C2   | N7   | 108.6(2)   |
| N5   | N6   | 06   | 116.2(2) | N5   | C2   | C1   | 108.45(18) |

## **Table S6:** Torsion Angles for 2.

| A  | В  | С  | D  | Angle/°    | Α  | В  | С  | D  | Angle/°     |
|----|----|----|----|------------|----|----|----|----|-------------|
| O4 | N4 | N3 | C1 | 1.3(4)     | N3 | C1 | C2 | N7 | 61.7(2)     |
| 01 | N2 | N1 | C1 | 179.7(2)   | N3 | C1 | C2 | N5 | 177.9(2)    |
| 02 | N2 | N1 | C1 | 0.0(3)     | N8 | N7 | C2 | N5 | 77.6(3)     |
| O3 | N4 | N3 | C1 | -179.3(2)  | N8 | N7 | C2 | C1 | -166.23(19) |
| N2 | N1 | C1 | N3 | -76.8(3)   | N1 | C1 | C2 | N7 | 176.8(2)    |
| N2 | N1 | C1 | C2 | 168.03(19) | N1 | C1 | C2 | N5 | -66.9(2)    |
| N4 | N3 | C1 | N1 | 132.4(2)   | C2 | N7 | N8 | 08 | -179.2(2)   |
| N4 | N3 | C1 | C2 | -114.2(2)  | C2 | N7 | N8 | 07 | -0.1(3)     |
| N6 | N5 | C2 | N7 | -134.9(2)  | C2 | N5 | N6 | O6 | 179.3(2)    |
| N6 | N5 | C2 | C1 | 110.8(2)   | C2 | N5 | N6 | 05 | -0.7(4)     |

**Table S7:** Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **2**.

| Atom | x       | У       | Z       | U(eq) |
|------|---------|---------|---------|-------|
| Н9С  | 5992.16 | 7525.96 | 1717.29 | 25    |
| H9D  | 6409.83 | 7449.38 | 3169.7  | 25    |
| H12A | 8629.27 | 5670.94 | 5101.71 | 12    |

**Table S7:** Hydrogen Atom Coordinates ( $Å \times 10^4$ ) and Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **2**.

| Atom | x        | У        | ζ         | U(eq) |
|------|----------|----------|-----------|-------|
| H12B | 8111.56  | 5318.44  | 6306.44   | 12    |
| H12C | 8375.61  | 6868.87  | 6000.2    | 12    |
| H10A | 3648.14  | 8817.71  | 160.71    | 13    |
| H10B | 3214.1   | 7745.08  | 1067.42   | 13    |
| H10C | 2846.3   | 9323.39  | 1112.68   | 13    |
| H14A | 4382.98  | 6622.39  | 6771.61   | 15    |
| H14B | 4103.99  | 5121.71  | 7203.62   | 15    |
| H14C | 4563.33  | 6310.62  | 8276.69   | 15    |
| H15A | 175.66   | 3108.47  | -3184.71  | 15    |
| H15B | 776.14   | 2735.62  | -1654.24  | 15    |
| H15C | 1733.94  | 3453.3   | -2357.77  | 15    |
| H9A  | 1060(40) | 7790(50) | -70(40)   | 21    |
| H13A | 2040(40) | 6440(50) | 6110(40)  | 21    |
| H13B | 2360(40) | 7510(50) | 7480(40)  | 21    |
| H11A | 6100(40) | 6590(50) | 5260(40)  | 16    |
| H11B | 6220(40) | 5220(50) | 4730(40)  | 16    |
| H16A | 450(40)  | 4790(50) | -970(40)  | 18    |
| H16B | 1160(40) | 5580(40) | -2170(40) | 18    |
| H1   | 3737.35  | 3677.81  | 2710.45   | 9     |
| H2   | 1396.53  | 5852.73  | 2382.86   | 9     |
| H9B  | 1180(40) | 9350(40) | -780(30)  | 9(8)  |



Figure S2: Molecular Structure of 3.

| Table S8: Crystal data and structure refinement for 3. |                                                        |  |  |  |  |
|--------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| CCDC No.                                               | 2416100                                                |  |  |  |  |
| Empirical formula                                      | $CH_{15}N_{10}O_4$                                     |  |  |  |  |
| Formula weight                                         | 231.23                                                 |  |  |  |  |
| Temperature/K                                          | 100                                                    |  |  |  |  |
| Crystal system                                         | monoclinic                                             |  |  |  |  |
| Space group                                            | $P2_1/n$                                               |  |  |  |  |
| a/Å                                                    | 10.1038(10)                                            |  |  |  |  |
| b/Å                                                    | 9.4721(9)                                              |  |  |  |  |
| c/Å                                                    | 10.9619(11)                                            |  |  |  |  |
| α/°                                                    | 90                                                     |  |  |  |  |
| β/°                                                    | 116.549(3)                                             |  |  |  |  |
| γ/°                                                    | 90                                                     |  |  |  |  |
| Volume/Å <sup>3</sup>                                  | 938.47(16)                                             |  |  |  |  |
| Z                                                      | 4                                                      |  |  |  |  |
| $\rho_{calc}g/cm^3$                                    | 1.637                                                  |  |  |  |  |
| $\mu/mm^{-1}$                                          | 0.148                                                  |  |  |  |  |
| F(000)                                                 | 492.0                                                  |  |  |  |  |
| Crystal size/mm <sup>3</sup>                           | 0.33 	imes 0.22 	imes 0.22                             |  |  |  |  |
| Radiation                                              | MoKa ( $\lambda = 0.71073$ )                           |  |  |  |  |
| $2\Theta$ range for data collection/^                  | 5.98 to 56.652                                         |  |  |  |  |
| Index ranges                                           | $-13 \le h \le 13, -12 \le k \le 12, -14 \le l \le 14$ |  |  |  |  |
| Reflections collected                                  | 13324                                                  |  |  |  |  |
| Independent reflections                                | 2345 [ $R_{int} = 0.0602, R_{sigma} = 0.0395$ ]        |  |  |  |  |
| Data/restraints/parameters                             | 2345/0/196                                             |  |  |  |  |
| Goodness-of-fit on F <sup>2</sup>                      | 1.049                                                  |  |  |  |  |
| Final R indexes [I>=2 $\sigma$ (I)]                    | $R_1 = 0.0467, wR_2 = 0.1071$                          |  |  |  |  |
| Final R indexes [all data]                             | $R_1 = 0.0559, wR_2 = 0.1137$                          |  |  |  |  |
| Largest diff. peak/hole / e Å <sup>-3</sup>            | 0.56/-0.33                                             |  |  |  |  |

|      |            | tensor.     |            |         |
|------|------------|-------------|------------|---------|
| Atom | x          | у           | z          | U(eq)   |
| O4   | 3108.5(13) | 3293.2(12)  | 2811.0(12) | 11.0(3) |
| O3   | 5362.0(13) | 3171.9(12)  | 4506.6(12) | 13.1(3) |
| O2   | 6630.0(14) | -1294.1(14) | 2459.7(13) | 16.7(3) |
| 01   | 6727.6(14) | 898.0(13)   | 3157.9(13) | 15.5(3) |
| N2   | 6323.5(15) | -383.2(15)  | 3161.2(14) | 11.0(3) |
| N4   | 4224.0(15) | 2527.1(15)  | 3664.1(14) | 10.3(3) |
| N9   | 1469.5(16) | 7469.2(17)  | 4501.8(16) | 13.1(3) |
| N1   | 5590.7(16) | -804.3(15)  | 3804.0(15) | 12.1(3) |
| N3   | 4033.5(15) | 1188.2(15)  | 3532.9(15) | 11.5(3) |
| N10  | -33.2(16)  | 7915.4(17)  | 4162.2(16) | 14.5(3) |
| N5   | 5681.4(16) | 3977.8(16)  | 7098.4(15) | 11.9(3) |
| N8   | 1583.4(17) | 4546.2(16)  | 4523.8(16) | 15.3(3) |
| N7   | 2640.1(16) | 4070.8(17)  | 5860.1(16) | 15.3(3) |
| N6   | 5823.4(18) | 4038.1(17)  | 8473.8(16) | 15.8(3) |
| C1   | 5265.5(18) | 351.5(17)   | 4518.7(17) | 11.1(3) |
|      |            |             |            |         |

**Table S9:** Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **3**. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub>

**Table S10:** Anisotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **3.** The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | <b>U</b> <sub>11</sub> | $U_{22}$ | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|------------------------|----------|-----------------|-----------------|-----------------|-----------------|
| O4   | 7.6(5)                 | 11.3(5)  | 12.6(6)         | 4.1(4)          | 3.0(4)          | 3.8(4)          |
| O3   | 8.5(6)                 | 12.0(6)  | 14.8(6)         | -2.0(5)         | 1.6(5)          | -2.9(4)         |
| O2   | 17.3(6)                | 17.5(6)  | 17.4(6)         | -1.4(5)         | 9.7(5)          | 4.7(5)          |
| 01   | 16.6(6)                | 15.2(6)  | 14.5(6)         | 0.0(5)          | 6.9(5)          | -4.9(5)         |
| N2   | 7.0(6)                 | 13.3(7)  | 11.2(6)         | 2.3(5)          | 2.8(5)          | 1.8(5)          |
| N4   | 7.2(6)                 | 11.1(6)  | 11.5(6)         | 1.6(5)          | 3.1(5)          | 0.2(5)          |
| N9   | 10.3(7)                | 16.1(7)  | 12.7(7)         | -1.4(6)         | 4.9(6)          | -2.4(5)         |
| N1   | 10.4(7)                | 12.3(6)  | 15.0(7)         | 0.7(5)          | 6.9(5)          | 0.5(5)          |
| N3   | 8.8(6)                 | 11.0(6)  | 13.7(7)         | 1.6(5)          | 4.2(5)          | 0.4(5)          |
| N10  | 8.7(7)                 | 17.3(8)  | 17.4(7)         | -1.1(6)         | 5.7(6)          | -1.1(5)         |
| N5   | 9.8(7)                 | 12.7(7)  | 13.2(7)         | 0.3(5)          | 5.1(6)          | 0.6(5)          |
| N8   | 10.7(7)                | 18.7(7)  | 13.6(7)         | 0.6(6)          | 2.8(6)          | -0.4(6)         |
| N7   | 10.6(7)                | 17.6(7)  | 15.8(7)         | 2.7(6)          | 4.3(6)          | 0.3(5)          |
| N6   | 17.5(8)                | 17.2(7)  | 14.2(7)         | 2.3(6)          | 8.4(6)          | 1.6(6)          |
| C1   | 7.9(7)                 | 11.5(7)  | 12.2(7)         | 0.7(6)          | 2.9(6)          | 0.4(6)          |

| Atom | Atom | Length/Å   | Atom | Atom | Length/Å |
|------|------|------------|------|------|----------|
| O4   | N4   | 1.3150(17) | N9   | N10  | 1.455(2) |
| O3   | N4   | 1.2644(18) | N1   | C1   | 1.466(2) |

Table S11: Bond Lengths for 3.

| Atom | Atom | Length/Å   | Atom               | Atom   | Length/Å |
|------|------|------------|--------------------|--------|----------|
| O2   | N2   | 1.2823(19) | N3                 | C1     | 1.464(2) |
| 01   | N2   | 1.2809(19) | N5                 | N6     | 1.450(2) |
| N2   | N1   | 1.292(2)   | N8                 | N7     | 1.446(2) |
| N4   | N3   | 1.281(2)   | C1                 | $C1^1$ | 1.533(3) |
|      |      |            | <sup>1</sup> 1-X,- | Y,1-Z  |          |

## Table S12: Bond Angles for 3.

| Atom | Atom | Atom | Angle/°    | Atom                | Atom | Atom   | Angle/°    |
|------|------|------|------------|---------------------|------|--------|------------|
| O2   | N2   | N1   | 118.04(14) | N2                  | N1   | C1     | 112.37(13) |
| 01   | N2   | O2   | 118.23(14) | N4                  | N3   | C1     | 114.68(13) |
| O1   | N2   | N1   | 123.70(14) | N1                  | C1   | $C1^1$ | 105.92(16) |
| 03   | N4   | O4   | 117.61(13) | N3                  | C1   | N1     | 109.24(13) |
| O3   | N4   | N3   | 127.02(14) | N3                  | C1   | C11    | 107.43(16) |
| N3   | N4   | O4   | 115.37(13) |                     |      |        |            |
|      |      |      |            | <sup>1</sup> 1-X,-Y | ,1-Z |        |            |

| Α  | В                       | С  | D  | Angle/°     | Α  | В  | С  | D      | Angle/°     |
|----|-------------------------|----|----|-------------|----|----|----|--------|-------------|
| O4 | N4                      | N3 | C1 | -178.10(13) | N2 | N1 | C1 | N3     | 77.46(16)   |
| O3 | N4                      | N3 | C1 | 2.7(2)      | N2 | N1 | C1 | $C1^1$ | -167.11(15) |
| 02 | N2                      | N1 | C1 | -177.73(13) | N4 | N3 | C1 | N1     | -134.67(14) |
| 01 | N2                      | N1 | C1 | 0.4(2)      | N4 | N3 | C1 | $C1^1$ | 110.87(18)  |
|    | <sup>1</sup> 1-X,-Y,1-Z |    |    |             |    |    |    | -Z     |             |

**Table S14:** Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters<br/>(Ų×10<sup>3</sup>) for **3.** 

| Atom | x        | y        | Z        | U(eq) |
|------|----------|----------|----------|-------|
| H1   | 6130(20) | 910(20)  | 5040(20) | 10(5) |
| H10A | -610(20) | 7450(20) | 3420(20) | 11(5) |
| H9A  | 1690(20) | 7760(20) | 3870(20) | 14(5) |
| H10B | -80(30)  | 8800(30) | 3990(30) | 22(6) |
| H9B  | 2080(30) | 7850(30) | 5270(30) | 24(6) |
| H9C  | 1490(30) | 6530(30) | 4560(30) | 28(7) |
| H6A  | 5240(30) | 3350(30) | 8520(20) | 20(6) |
| H5A  | 4720(30) | 4040(20) | 6530(30) | 22(6) |
| H5B  | 6060(30) | 3190(30) | 6940(20) | 18(6) |
| H6B  | 6750(30) | 3790(30) | 9070(30) | 29(7) |
| H5C  | 6150(30) | 4760(20) | 7010(20) | 16(5) |
| H8A  | 710(30)  | 4130(30) | 4270(30) | 25(6) |
| H8B  | 1930(30) | 4260(30) | 3920(30) | 25(6) |
| H7A  | 2440(30) | 3180(30) | 5920(20) | 24(6) |
| H7B  | 2450(30) | 4660(30) | 6480(30) | 28(6) |
|      |          |          |          |       |

### NMR, IR, DSC, and TGA plots



Figure S3: <sup>1</sup>H NMR Spectrum of 2.



Figure S4: <sup>13</sup>C NMR Spectrum of 2.



Figure S5: IR Spectrum of Compound 2.



Figure S6: Mass Spectrum of Compound 2.

SKR TNAE H



Figure S7: TGA-DSC Plot of Compound 2 at the Heating rate 5 °C min<sup>-1</sup>.



Figure S8: <sup>1</sup>H NMR Spectrum of 3.



Figure S9: <sup>13</sup>C NMR Spectrum of 3.



Figure S10: IR Spectrum of Compound 3.



Figure S11: Mass Spectrum of Compound 3.



Figure S12: TGA-DSC Plot of Compound 3 at the Heating rate 5 °C min<sup>-1</sup>.

**Computational Details** 

Computations were carried out using the Gaussian 09 program suite.<sup>3</sup> The structure optimizations are performed with M06-2X/def2-TZVPP level of theory and characterized to be true local energy minima on the potential energy surface and no imaginary frequencies were found. Heat of formation (HOF) is a measure of energy content of an energetic material that can decompose, ignite and explode by heat or impact. It enters into the calculation of explosive and propellant properties such as detonation velocity, detonation pressure, heat of detonation and specific impulse. However, it is impractical to determine the HOF of novel energetic materials because of their unstable intermediates and unknown combustion mechanism. Gasphase heats of formation for TNAE neutral compound and its tetra anionic component were calculated using the isodesmic reaction approach (see Figure S13). Calculated total energies and related data for reference compounds and target compounds is listed in Tables S15 and S16.



**Figure S13**: Designed isodesmic reactions for the prediction of gas phase heats of formation TNAE and its anion.

Based on the Born–Haber cycle (shown in Figure S14), the heat of formation of an ionic compound can be simplified by subtracting the lattice energy of the salt ( $H_L$ ) from the total heat of formation of salt (see Table S17) *i.e.* sum of the heats of formation of the cation and anion as shown in equation (3).

HOF (salt, 298 K) = HOF (cation, 298 K) + HOF (anion, 298 K) - 
$$H_L$$
 (3)



Figure S14: Born-Haber cycle for the formation of energetic salts.

Lattice potential energy is the energy associated with the process in which a crystalline solid lattice,  $M_pX_q$  is converted into its constituent gaseous ions,  ${}_pM^{q+}$  (g) and  ${}_qX^{p-}$  (g). The lattice energy can be predicted with reasonable accuracy by using Jenkins' equation (4).<sup>4</sup>

$$H_{L} = U_{POT} + [p(\frac{n_{M}}{2} - 2) + q(\frac{n_{X}}{2} - 2)]RT$$
(4)

where nM and nX depend on the nature of the ions  $M_p^+$  and  $X_q^-$ , respectively, and are equal to 3 for monoatomic ions, 5 for linear polyatomic ions, and 6 for nonlinear polyatomic ions. When lattice potential energy ( $U_{POT}$ ), is incorporated and made part of a Born–Haber cycle, it needs to be converted into a lattice enthalpy term. This lattice enthalpy ( $H_L$ ) involves correction of the  $U_{POT}$  term by an appropriate number of RT terms. The HOF of compound 3 was calculated by adding the HOF of hydrazine molecules and salt 2, and the computed value is -92.08 kJ/mol.

**Table S13:** Calculated total energies at 298K ( $E_0$ ), zero-point energies (ZPE), and thermal corrections ( $H_T$ ) and experimental HOF<sub>gas</sub> of reference compounds used isodesmic reaction at the M06-2X/def2-TZVPP level.

| Compd.                            | E <sub>0</sub> (a.u.) | ZPE (au) | H <sub>T</sub> (au) | HOF <sub>gas</sub><br>(kJ/mol) |
|-----------------------------------|-----------------------|----------|---------------------|--------------------------------|
| CH <sub>4</sub>                   | -40.453065            | 0.0449   | 0.0038              | -74.8                          |
| CH <sub>3</sub> CH <sub>3</sub>   | -79.727235            | 0.075    | 0.0045              | -84                            |
| NH <sub>3</sub>                   | -56.513648            | 0.0345   | 0.0038              | -45.94                         |
| CH <sub>3</sub> NHNO <sub>2</sub> | -300.274649           | 0.0684   | 0.0060              | -3.76ª                         |
| NH <sub>2</sub> -                 | -55.856335            | 0.0186   | 0.0038              | 111.75 <sup>a</sup>            |

<sup>a</sup>Calculated using G4 method.

**Table S14:** Calculated total energies ( $E_0$ ), zero-point energies (ZPE), and thermal corrections ( $H_T$ ) for TNAE and its anion at the M06-2X/def2-TZVPP level.

| Compd.                                                                           | E <sub>0</sub> (a.u.) | ZPE<br>(au) | H <sub>T</sub><br>(au) | HOF <sub>gas</sub> /HOF <sub>anion</sub><br>(kJ/mol) |
|----------------------------------------------------------------------------------|-----------------------|-------------|------------------------|------------------------------------------------------|
| O <sub>2</sub> N—NH NH-NO <sub>2</sub><br>O <sub>2</sub> N—NH NH-NO <sub>2</sub> | -1119.032178          | 0.1592      | 0.0170                 | 151.3                                                |
| $O_2 N - N - N - NO_2$<br>$O_2 N - N - NO_2$                                     | -1116.286576          | 0.1039      | 0.0162                 | 1087.5                                               |

#### **Table S15:** Energy content of salts 2.

| Compd. | HOF <sub>c</sub> <sup>a</sup> | HOF <sub>a</sub> <sup>b</sup> | U <sub>Pot</sub> <sup>c</sup> | H <sub>L</sub> <sup>d</sup> | HOF <sub>salt</sub> <sup>e</sup> |
|--------|-------------------------------|-------------------------------|-------------------------------|-----------------------------|----------------------------------|
| 2      | 769.5                         | 1087.5                        | 4340.54                       | 4352.93                     | -187.43                          |

<sup>a</sup>Heat of formation of cation (kJ mol<sup>-1</sup>). HOF<sub>c</sub> data for cations is obtained from Ref. 5. <sup>b</sup>Heat of formation of anion (kJ mol<sup>-1</sup>). <sup>c</sup>Lattice potential energy (kJ mol<sup>-1</sup>). <sup>d</sup>Lattice energy (kJ mol<sup>-1</sup>). <sup>e</sup>Heat of formation of salt (kJ mol<sup>-1</sup>).

**Table S16:** Optimized coordinates of TNAE at M06-2X/def2TZVPP level of theory.

| 6 | -0.766691000 | -0.003915000 | -0.055078000 |
|---|--------------|--------------|--------------|
| 6 | 0.766674000  | 0.003910000  | 0.055064000  |
| 7 | 1.340066000  | -1.082355000 | -0.746920000 |
| 7 | 1.256079000  | 1.249346000  | -0.455675000 |
| 7 | -1.340101000 | 1.082344000  | 0.746899000  |
| 7 | -1.256079000 | -1.249359000 | 0.455681000  |
| 7 | 2.423472000  | 1.737645000  | 0.095328000  |
| 8 | 3.117277000  | 0.936761000  | 0.678692000  |
| 8 | 2.649876000  | 2.901784000  | -0.095780000 |
| 7 | 1.860205000  | -2.161115000 | -0.066437000 |
| 8 | 1.318901000  | -2.447406000 | 0.985891000  |
| 8 | 2.762128000  | -2.748068000 | -0.592583000 |

| 7 | -2.423492000 | -1.737655000 | -0.095300000 |
|---|--------------|--------------|--------------|
| 8 | -3.117340000 | -0.936761000 | -0.678594000 |
| 8 | -2.649880000 | -2.901799000 | 0.095784000  |
| 7 | -1.860158000 | 2.161142000  | 0.066423000  |
| 8 | -1.318817000 | 2.447419000  | -0.985891000 |
| 8 | -2.762121000 | 2.748086000  | 0.592512000  |
| 1 | -1.061604000 | 0.136778000  | -1.096651000 |
| 1 | 1.061587000  | -0.136796000 | 1.096637000  |
| 1 | 1.996855000  | -0.793432000 | -1.461494000 |
| 1 | 0.609923000  | 1.987553000  | -0.722095000 |
| 1 | -1.996916000 | 0.793422000  | 1.461448000  |
| 1 | -0.609892000 | -1.987579000 | 0.722006000  |

 Table S17: Optimized coordinates of TNAE anion at M06-2X/def2TZVPP level of theory.

| 6 | 0.778120000  | 0.040535000  | -0.089263000 |
|---|--------------|--------------|--------------|
| 6 | -0.778089000 | -0.040510000 | 0.089262000  |
| 7 | -1.426351000 | 1.000964000  | -0.722328000 |
| 7 | -1.197222000 | -1.346258000 | -0.448299000 |
| 7 | 1.426366000  | -1.000949000 | 0.722347000  |
| 7 | 1.197271000  | 1.346273000  | 0.448293000  |
| 7 | -2.301181000 | -1.803379000 | -0.015169000 |
| 8 | -3.021745000 | -1.237547000 | 0.862905000  |
| 8 | -2.728361000 | -2.920371000 | -0.492995000 |
| 7 | -2.109414000 | 1.895626000  | -0.124342000 |
| 8 | -2.229899000 | 2.016413000  | 1.127458000  |
| 8 | -2.730512000 | 2.754092000  | -0.858560000 |
| 7 | 2.301212000  | 1.803409000  | 0.015140000  |
| 8 | 3.021761000  | 1.237590000  | -0.862967000 |
| 8 | 2.728389000  | 2.920404000  | 0.492951000  |
| 7 | 2.109378000  | -1.895656000 | 0.124376000  |

| 8 | 2.229820000  | -2.016508000 | -1.127423000 |
|---|--------------|--------------|--------------|
| 8 | 2.730465000  | -2.754121000 | 0.858615000  |
| 1 | 1.026898000  | -0.063698000 | -1.144252000 |
| 1 | -1.026857000 | 0.063699000  | 1.144257000  |

#### Reference

- C. Zhu, Z. Meng, Z. Xu, W. Liu, Y. Liu, X. Shi, Y. Liu, T. Xie, Cent. Eur. J. Energ. Mater. 2018, 15, 435–444.
- (2) M. Born, M. A. C. Härtel, T. M. Klapötke, M. Mallmann, J. Stierstorfer, *Zeitschrift fur Anorg. und Allg. Chemie* **2016**, *642*, 1412–1418.
- (3) Gaussian 09, Revision E.01, M. J.Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian*, Inc., Wallingford CT, **2013**.
- Jenkins, H. D. B.; Tudela, D.; Glasser, L. Lattice Potential Energy Estimation for Complex Ionic Salts from Density Measurements. *Inorg. Chem.* 2002, 41, 2364-2367.