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1. Experimental details

1.1 Reagent and materials 

Ruthenium trichloride (RuCl3.xH2O) (99.98 %), Au chloride solution (HAuCl4·3H2O, ≥99.9% 

trace metals basis), Nickel foam (NF), Iron nitrate (Fe(NO3)3.9H2O (≥98%), Sodium 

hypophosphite (NaH2PO2.H2O) (≥99%), PMDA (97%), KOH (≥85%), and HPLC grade water 

were used throughout the experiments.

1.2. Synthesis of Ru-NiFeP/Au by an electrodeposition method

For the synthesis of Au-NF, galvanic replacement technique was employed. NF was initially 

washed with 3M HCl to exclude the surface oxides. After that, NF piece was added to 50 mL of 

34 mg/L of gold (III) chloride at pH~4 buffer and 0.5M NaCl and kept for stirring for 30 min. The 

prepared Au/NF were used as working electrodes, Ag/AgCl used as a reference and carbon cloth 

as a counter electrode. To the 5, 10, 15, 20, 25 mmol of RuCl3.xH2O, 10 mmol Fe(NO3)3.9H2O, 

and 100 mmol NaH2PO2.H2O electrolytes, constant potential of -1.3 V is applied for 300 s. The 

formed product is named Ru5-NiFeP/Au-NF. Here, NF itself acted as a Ni source. After the 

deposition, electrodes were washed with DI water several times and dried at room temperature.   

1.3.  Physical characterization

The crystallinity of the samples was determined using X-ray diffraction (XRD) recorded on a 

Bruker D8 Discover instrument using Cu-Kα radiation (40 kV, λ = 0.15418 nm) equipped with a 

LynxEYE 1-dimensional detector. The scan rate of 0.02° is within the 2θ range of 10–90°. The 

morphology was analyzed by scanning electron microscopy (SEM-EDS) (Phenom proX Desktop). 

JEOL JEM-ARM200CF S/TEM operating at an acceleration voltage of 200 KeVwas used to 

acquire high resolution – transmission electron microscopy (HR-TEM) images. X-ray 

photoelectron spectroscopy (XPS) on an Axis-Ultra, Kratos Analytical instrument and a 

monochromatic Al-Kα source (photon energy ≈1486.7 eV, source voltage-15 kV, current-10 mA, 

power-50 W, Rowland circle monochromator) under ultrahigh vacuum (∼10−9 Torr). The binding 
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energies of all elements were corrected with respect to adventitious carbon peak at 284.6 eV. The 

in-situ Raman spectroscopy was used to investigate changes in the vibrational modes of the 

electrodes using a Thermo Scientific DXR2 Raman microscope equipped with a 532 nm laser. The 

crystalline nature of the materials were also studied by synchrotron-based wide-angle X-ray 

scattering (WAXS) measurement. The WAXS analysis was carried out at 04ID-1 BXDS-WLE, 

low energy wiggler beamline of Canadian light source (CLS). The energy range for this beamline 

was 7-22 keV, with a maximum photon flux of 1 x 1012 to 5 x 1012 photons/s in focus on the sample 

at 250 mA ring current. The electronic nature of the samples were studied using synchrotron-based 

soft X-ray absorption spectroscopy (sXAS) and the beamline operating energy range was 3.5–1500 

eV, monochromator VLS-PGM, deviation angle 140-176.3º, spectral resolution- 104 (E/ΔE) 

@100eV, 10 µm slit width and spot size 2x 0.2 mm2. Local chemical environment and co-

ordination nature was studied by Hard X-ray Microanalysis (HXMA) beamline of CLS. The 

energy range for the beamline was 5-40 KeV with a superconducting Wiggler source and photon 

flux of 1012@12 keV. The spot size was 0.8 x 1.5 mm while the spectral resolution was 1x10-4. 

1.4.Electrochemical OER Studies

Electrocatalytic OER studies were executed in a three-electrode cell in 1M KOH electrolyte. 

Carbon paper as a counter electrode, Ag/AgCl as a reference electrode and RuNiFeP/Au electrodes 

acted as working electrodes. Freshly prepared KOH (50 mL) was used to study OER 

measurements. After 5 CV scans at 100 mV s-1 for activation, LSV was carried out at a scan rate 

of 5 mV s-1. The LSV curves were 50% iR-corrected from the Rs values read from the EIS studies. 

The in-situ EIS studies were tested at different applied potential biases with an AC amplitude of 

0.005 V in the frequencies range of 100 kHz to 0.1 kHz. Electrochemical active surface area 

(ECSA) was derived from the Cdl method in a non-faradaic region (0-0.1 V vs Ag/AgCl) and 

calculated from ja-jc vs . The stability of the electrodes was measured via the galvanostatic 

method at a constant current density of 100 mA cm-2 for 30 h in OER. TOF for OER was calculated 

using the following formula, 

                                   TOF = jS/4nF 

Where, j – current density, S – geometrical surface area, n – active molar sites (from ICP-MS) and 

F – Faraday constant. The mass activity was calculated using, 

Mass activity = Current density (j)/loading (mg). The specific activity of the 

electrodes was measured by normalizing the current with the calculated ECSA values. 
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Figure S1. (a) XRD pattern of NF, Au/NF, and RuFeP/NF catalysts. (b) Enlarged view of the 

XRD pattern demonstrating the peak shifts in RuFeP catalysts. 
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Figure S2. (a) Synchrotron based grazing incident wide X-ray scattering (GI-WAXS) 2D scan 

image and (b) corresponding Q values respectively showing the metallic peaks of Ni and Au. 

respectively.   
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Figure S3. (a) Au-NF SEM image, (b-c) EDS elemental mapping results of Au and AuNi 

composite respectively, (d) corresponding EDS spectra.  
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Figure S4. SEM images of Ru5-NiFeP/Au, (a) SEM image showing islands of RuFeP, and (b-h) 

elemental mapping for mix composite, Au, Ru, Ni, Fe, P, and O respectively.  

Figure S5. SEM images of Ru10-NiFeP/Au, (a) SEM image showing islands of RuFeP, and (b-h) 

elemental mapping for mix composite, Au, Ru, Fe, P, and O respectively.  
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Figure S6. SEM images of Ru15-NiFeP/Au, (a) SEM image showing islands of RuFeP, and (b-

g) elemental mapping for mix composite, Au, Ru, Fe, P, and O respectively.  

Figure S7. HR-TEM images of Au-Ni and (a-e) are the low to high magnification images revealing 

the layers of Au over Ni and (f) is the corresponding SAED pattern showing polycrystalline nature.
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Figure S8. HR-TEM images of Ru15-NiFeP/Au-NF (a-d) low to high magnification images 

showing the island structures and (e-f) corresponding SAED pattern displaying amorphous nature 

and FFT pattern showing polycrystalline nature of Au-Ni.
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Figure S9. (a) XPS survey scan and HR-XPS spectra of Ru15-NiFeP/Au-NF in (a) Au 4f and (b) 

Ni 2p regions respectively.
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Figure S10. (a) XPS survey scan and (b-h) high resolution XPS spectra of Ru5-Au 4f, Ni 2p, Ru 

3p, Fe 2p, P 2p, and C1s, Ru3d, and O1s respectively.
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Figure S11. (a) XPS survey scan and (b-h) high resolution XPS spectra of Ru15-NiFeP/Au, 

consisting of Au 4f, Ni 2p, Ru 3p, Fe 2p, P 2p, and C1s, Ru3d, and O1s respectively.  
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Figure S12. Synchrotron based soft X-ray absorption spectra of Ru15-NiFeP@Au islands. (a-c) 

EEMS scanning profiles of Ni, L, and O respectively.
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Figure S13. Synchrotron based hard X-ray absorption spectra of Ni-K edge XANES spectra. 
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Table S1. EXAFS fitting results of Ru15-NiFeP/Au

Atom Bond Bond length CN E 2 (10-3) R-factor

Fe-O 1.90 (0.02)
4.4 

(0.6) 9.2 (0.9) 9.4 (0.7)
Fe

Fe-P 2.34 (0.05)
4.5 

(0.4) 3.9 (0.5) 8.8 (0.9)

0.008

Ru-O 1.92 (0.08)
1.3 

(0.3) 6.5 (0.7) 5.7 (0.3)

Ru-O/P 2.03 (0.06)
4.6 

(0.5) 3.8 (0.5) 3.6 (0.5)

Ru

Ru-Fe 2.59 (0.05)
6.9 

(0.8) 0.9 (0.3) 3.7 (0.3)

0.008
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Figure S14. (a) LSV studies of RuO2/NF and (b) Tafel slope in 1 M KOH electrolyte. 



S18

Figure S15. (a-d) Double layer capacitance (Cdl) results of Ni, Au-Ni, NiFeP/Au, and Ru5-

NiFeP/Au electrodes in non-Faradaic region and (e) Plot of j vs  displaying the Cdl of each 

catalyst. 
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Table S2. Comparison of OER results of Ru15-NiFeP/Au with the literature reports

S. No Catalyst Electrolyte Overpotential (mV) / 

mA cm-2

References

1 3DG−Au-Ni3S2 1 M KOH 370 mV @ 91 mA cm-2 1

2 Au/NiCo2O4 1 M KOH 360 mV @ 10 mA cm-2 2

3 Ni/Au/Cysteine 0.1 M KOH 310 mV @ 10 mA cm-2 3

4 Fe0.14Co0.86-P/CC 1 M KOH 270 mV @ 10 mA cm-2 4

5 Co2P/FeP-FeP4 1 M KOH 230 mV @ 10 mA cm-2 5

6 CoP/FeP/CeOx 1 M KOH 285 mV @ 10 mA cm-2 6

7 CoP/FeP/CP 1 M KOH 260 mV @ 10 mA cm-2 7

8 CoP/FeP 1 M KOH 280 mV @ 10 mA cm-2 8

9 RuP/NPC 1 M KOH 310 mV @ 10 mA cm-2 9

10 NiFeP@NiP@NF 1 M KOH 227 mV @ 10 mA cm-2 10

11 Co-NiP@NC 1 M KOH 280 mV @ 10 mA cm-2 11

12 Ni2P/C-500 0.1 M KOH 260 mV @ 10 mA cm-2 12

13 Ni(PO3)2 1 M KOH 342 mV @ 10 mA cm-2 13

14 Ni2P/FeP4/CoP 1 M KOH 274 mV @ 10 mA cm-2 14

15 NiFeP/Zn 1 M NaOH 262 mV @ 10 mA cm-2 15

16 NiFeP-rGO 1 M KOH 250 mV @ 10 mA cm-2 16

17 NiFeP-MOF 1 M KOH 274 mV @ 10 mA cm-2 17

18 CrNiFeP/NC 1 M KOH 249 mV @ 10 mA cm-2 18

19 Ru15-NiFeP/Au 1 M KOH 223 mV @ 10 mA cm-2 This work



S20

Figure S16. LSV before and after the OER cycling study for 500 cycles at 200 mV/sec scan rate 

for Ru15-NiFeP/Au electrode in 1M KOH.  
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Figure S17. Post OER SEM images of Ru15-NiFeP/Au. (a and b) are the RuNiFeP islands similar 

to before OER studies and (c-h) are the color mapping results of Ni, Au, Ru, P, O and K 

respectively and here K arises from the electrolyte KOH used. 
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Figure S18. Post OER HR-TEM images of Ru15-NiFeP/Au. (a-c) High magnified images 

showing the islands of Ru15-NiFeP similar to that of before OER. (d) High magnification image 

and the inset shows the lattice fringes and (f) corresponding SAED pattern. 
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Figure S19. Post OER HR-XPS spectra of Ru15-NiFeP/Au-NF in (a-e) High resolution spectra 

of Au 4f, Ni 2p, Fe 2p, C1s, Ru3d, and P 2p respectively.  
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Figure S20. iR uncorrected CV from 1.3 to 1.6 V vs RHE chosen for studying electrode/electrolyte 

interface by in-situ EIS studies.   
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Figure S21. (a) In-situ SERS studies of bare NF and (b) Fitted peak area for NiOOH and the 

corresponding intensities.
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Figure S22. In-situ SERS studies of Ru15-NiFeP/Au showing the fitted peak area and intensities 

of FeOOH.    

Figure S23. (a) Tauc plot of FeP and (b) Tauc plot of RuFeP demonstrating the role of Ru in the 

reduction of band gap.
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2.Density Functional Theory (DFT) study

2.1. Computational Methodology

To gain atomistic insights into the oxygen evolution reaction mechanism on RuO over 

NiFeOOH system, first-principles calculations were performed using density functional theory as 

implemented in Vienna ab-initio simulation (VASP 6.2.0) package.19 The electron exchange and 

correlations were approximated using Perdew-Burke-Ernzerhof (PBE) generalized gradient 

approximation (GGA).20 The electron-ion interactions were described by all electron projector 

augmented wave (PAW) pseudopotentials.21 The dispersion energy corrections were incorporated 

using DFT+D3 approach of Grimme et al.22 A supercell of size 2*2*1 was constructed to explore 

the maximum surface sites with non-equivalent chemical environment. The periodic images were 

separated by a vacuum of 20 Å along z direction to prevent spurious interactions. The Brillouin 

zone was sampled using 2*4*1 Monkhorst-Pack k-grid, for all structures. The optimization of all 

structures was performed using a conjugate gradient scheme until the convergence criteria for 

energies and the forces reached 10−5 eV and 0.01 eV Å-1, respectively. The strong correlation 

effects of d-electrons for Fe and Ni were accounted using DFT+U method with Ueff= 2.5 eV, 4.8 

eV and 4.0 eV for Fe, Ni and Ru, respectively. Bader charge scheme, as implemented in 

Henkelman code,23 was utilized to study the degree of charge distribution. 

Ideally, OER is a 4e– transfer process, consisting of four intermediate steps.24 The mechanism of 

oxygen reduction reaction is as follows:

*  + H2O → *OH + H+ + e-                                              (1)

*OH → *O + H+ + e-                                                                 (2)

*O + H2O → *OOH + H+ + e-                                                          (3)

*OOH → * + O2  + H+ + e-                                                            (4)

where * represent the catalytic surface.

The overpotential of OER process depends on the adsorption of intermediates on the catalytic 

surface. Hence, *OOH, *OH and *O intermediates are first adsorbed on NiFe-OOH at type-1 and 
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type-2 surface sites and, on the type-1 and type-2 RuO/NiFe-OOH at Ru, Then, the adsorption 

energy of intermediates involved are calculated using the following equations:

ΔEads(OH) = E(*OH) − [E* + E(H2O) − 0.5E(H2)]                         (1)

ΔEads(O) = E(*O) − [E* + E(H2O) − E(H2)]                                  (2)

ΔEads(OOH) = E(*OOH) − [E* + 2E(H2O) − 1.5E(H2)]                         (3)

ΔEads(OH), ΔEads(O) and ΔEads(OOH) are the adsorption energies of *OH, *O and *OOH 

intermediates, respectively. E(*OH), E(*O) and E(*OOH) are the total energy of the system 

(surface + intermediate), E* is the energy of the surface, E(H2O) and E(H2) are the energy of the 

reference molecules. To further analyze the thermodynamics of the reaction, the calculated 

adsorption energies were used to obtain the Gibbs free energies using the following equation24:

ΔG = ΔEads + ΔZPE − TΔS + ΔGU                                                  (4)

The Gibbs free energy for OER reaction is given as [6]:

ΔG = ΔEads + ΔZPE − TΔS - eU                                               (5)

Here, ΔZPE is the difference in zero-point energies of the species, and e represents number of 

electrons transferred.  Only vibrational energy contribution was considered during the calculation 

of entropies (Table S5-S8). The zero-point energy calculations were performed using vaspkit.25 

ΔGU  represents the free energy correction due to electrode potentials. The temperature was taken 

to be 298.18 K.

Gibbs free energy for all the steps (Eq 1-4) are ΔG1, ΔG2, ΔG3 and ΔG4 , respectively. The 

potential limiting step is given as,

ΔGPLS = max {ΔG1, ΔG2, ΔG3, ΔG4}                                          (6)

The limiting potential,

UL = - 

∆𝐺𝑃𝐿𝑆
𝑒
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The theoretical overpotential is given as

ηOER = UL -1.23 V                          (7)

where 1.23V is the theoretical potential for water splitting.

Figure S24. DFT study demonstrating the structure of O intermediate on type-1 NiFe-OOH.
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Figure S25. DFT study demonstrating the structure of O intermediate on type-2 NiFe-OOH.
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Figure S26. DFT study demonstrating the structure of O intermediate on type-1 Ru-O/NiFe-
OOH.
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Figure S27. DFT study demonstrating the structure of O intermediate on type-2 Ru-O/NiFe-
OOH.
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Figure S28. OER pathways in, (a) type-1 NiFe-OOH (b) type-2 NiFe-OOH.

Figure S29. (a-b) OER Free energy diagram of (a) type-1 NiFe-OOH (b) type-2 NiFe-OOH.
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Figure S30. Custom made in-situ SERS cell setup with Ru15-NiFeP/Au working electrode, 
Carbon cloth counter electrode and Ag/AgCl reference electrode respectively.
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Bader Charge Analysis

Table S3. Bader charge analysis for type-1 NiFe-OOH configuration

S.No. Type-1 
NiFe-OOH

O *O *O *H Ni1 Ni2 Fe

1. * + OH -0.44 -0.58 - 0.63 1.30 1.28 1.42

2. * + O -0.44 -0.07 - - 1.29 1.27 1.45

3. * + OOH -0.61 -0.02 -0.47 0.69 1.33 1.32 1.47

Table S4. Bader charge analysis for type-2 NiFe-OOH configuration

S.No. Type-2 
NiFe-OOH

O *O *O *H Ni Fe1 Fe2

1. * + OH -0.49 -0.54 - 0.61 1.34 1.45 1.45

2. * + O -0.42 -0.12 - - 1.25 1.45 1.44

3. * + OOH -0.64 -0.03 -0.45 0.65 1.34 1.47 1.47

Table S5. Bader charge analysis for type-1 RuO/NiFe-OOH

S.No. Type-2 
RuO/NiFe-OOH

O O1 O2 O3 *O *O *H Ru Ni

1. Surface (*) -0.54 -0.90 -0.88 -0.88 - - - 1.50 1.21

2. * + OH -0.58 -0.87 -0.88 -0.87 -0.98 - 0.57 1.61 1.30

3. * + O -0.33 -0.92 -0.86 -0.86 -0.28 - - 1.51 1.18

4. * + OOH -0.58 -0.87 -0.88 -0.87 -0.36 -0.56 0.58 1.61 1.30
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Table S6. Bader charge analysis for type-2 RuO/NiFe-OOH

S.No. Type-1 
RuO/NiFe-OOH

O O1 O2 O3 *O *O *H Ru Fe

1. Surface (*) -0.61 -0.87 -0.91 -0.91 - - - 1.52 1.32

2. * + OH -0.63 -0.89 -0.93 - -0.98 - 0.64 1.61 1.43

3. * + O -0.54 -0.93 -0.93 - -0.54 - - 1.82 1.43

4. * + OOH -0.61 -0.88 -0.90 - -0.36 -0.60 0.64 1.62 1.40

Gibbs Free Energy calculations

Table S7. Gibbs free energy for type-1 NiFe-OOH at U= 0V, 1.23 V and 1.94 V

Type1 NiFeOOH Adsorption 
Energy(eV)

∆(Z-∆TS) ∆G(U=0 V) ∆G(U=1.23 V) ∆G(U=1.94 
V)

OH 2.09 -0.42 1.94 0.71 0.0039

O 3.65 -0.31 3.34 0.88 -0.537

OOH 4.71 -0.44 4.28 0.59 -1.54

Table S8. Gibbs free energy for type-2 NiFe-OOH at U= 0V, 1.23 V and 1.82 V

Type2 NiFeOOH Adsorption 
Energy(eV)

∆(Z-∆TS) ∆G(U=0 V) ∆G(U=1.23 V) ∆G(U=1.82 
V)

OH 1.86 -0.10 1.76 0.53 -0.058

O 3.89 -0.31 3.58 1.12 -0.064

OOH 4.54 -0.49 4.05 0.36 -1.41
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Table S9. Gibbs free energy for type-1 RuO/NiFe-OOH at U= 0V, 1.23 V and 1.58 V

Type1 

RuO/NiFeOOH

Adsorption 
Energy(eV)

∆(Z-∆TS) ∆G(U=0 V) ∆G(U=1.23 V) ∆G(U=1.58 
V)

OH 1.02 -0.11 0.91 -0.32 -0.67

O 2.32 -0.29 2.03 -0.43 -1.13

OOH 4.07 -0.45 3.61 -0.08 -1.13

Table S10. Gibbs free energy for type-2 RuO/NiFe-OOH at U= 0V, 1.23 V and 1.70 V

Type2 

RuO/NiFeOOH

Adsorption 
Energy(eV)

∆(Z-∆TS) ∆G(U=0 V) ∆G(U=1.23 V) ∆G(U=1.70 
V)

OH 0.85 -0.11 0.77 -0.46 -0.93

O 2.13 -0.29 1.83 -0.62 -1.57

OOH 3.64 -0.42 3.22 -0.47 -1.88
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