Supplementary Information

Synergetic oxide-chalcogenide heterostructure in metallic two-dimensional VSe₂ for the hydrogen-evolution reaction

Hyuk Jin Kim^{1,#}, Yonghyuk Lee^{2,#}, Hyo Won Seoh^{1,3}, Tae Gyu Rhee^{1,3,4}, Yeong Gwang Khim^{1,3}, Seungchul Choi^{1,3}, Yoon-Kyung Seo⁵, Gyungtae Kim⁵, Ki-Jeong Kim⁶, Aloysius Soon^{7,8,*}, Young Jun Chang^{1,9*}

^{1.} Department of Physics, University of Seoul, Seoul, 02504, Republic of Korea

^{2.} Chemistry and Biochemistry, University of California, Los Angeles, 90095, United States of America

^{3.} Department of Smart Cities, University of Seoul, Seoul, 02504, Republic of Korea

^{4.} Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea

⁵National NanoFab Center (NNFC), Daejeon, 34141, Republic of Korea,

⁶Pohang Accelerator Laboratory, POSTECH, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea

⁷.Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea

⁸ School of Physics, The University of Sydney, NSW, Australia

⁹ Department of Intelligent Semiconductor Engineering, University of Seoul, Seoul, 02504, Republic of Korea [#] Hyuk Jin Kim and Yonghyuk Lee contributed equally to this work

*Corresponding author: Aloysius Soon, Young Jun Chang

Sample	Atom	ratio
VSe₂ ^{vc}	V	1
	Se	1.99
VSe ₂ -LO ^{vc}	V	1
	Se	1.04
	0	0.96
VSe₂-HO ^{vc}	V	1
	Se	0.33
	0	2.05

Table S1. Stoichiometry of VSe2vc, VSe2-LOvc, and VSe2-HOvc samples

The stoichiometry was determined by calculating the area ratios of the V 2p, Se 3d, and O 1s peaks from the XPS spectra. Because the sensitivity factor depends on the atomic species and their respective orbitals, we considered the partial ionization cross section and inelastic mean free path values at the employed photon energy¹⁻⁴.

VSe ₂ samples	Methods	Overpotential (mV at 10 mA/cm ²)	Tafel slope (mV dec⁻¹)	Ref
VSe ₂ -LO ^{ec} film	MBE	542	110	Our work
VSe ₂ flake	MBE	543~608*	160~203	5
VSe ₂ flake	Exfoliation	796	134	6
VSe ₂ flake	Exfoliation	900~1000	112	7
VSe ₂ nanosheet	Hydrothermal	414	142	8
VSe ₂ nanosheet	Colloidal	387	108	9
VSe ₂ nanosheet	Colloidal	547	101	10

 * The overpotential values are obtained at 1 mA/cm^{2}

Table S2. Comparison of HER performances in our VSe_2 -LO^{ec} film and other previouslyreported VSe_2 samples⁵⁻¹⁰

Figure S1. a, RHEED image of graphene/SiC substrate **b**, Line profiles extracted from the dashed rectangular regions of the RHEED images in Figure **S1a** and Figure **1b-d**.

Figure S2. a-c. XPS spectra of Se 3*d* in the VSe_2^{vc} (a), VSe_2 -LO^{vc} (b), and VSe_2 -HO^{vc} (c) samples. **d.** Area ratio of the deconvoluted components for the VSe_2^{vc} , VSe_2 -LO^{vc}, and VSe_2 -HO^{vc} samples.

The Se 3*d* peak was deconvoluted into Se²⁻, Se¹⁻ and Se⁰, with binding energies centered at 53.68 eV, 54.48 eV, and 55.78 eV, respectively. Se²⁻ is associated coordinated V-Se bonds within octahedral 1T-VSe₂^{11,12}. Se¹⁻ arises from Se in a more positive oxidation states than Se²⁻, derived from Se interstitials, Se near V-O bonding, or partially bound Se near V vacancies^{11,12}. Se⁰ corresponds to pure Se and it can be attributed to remnant of the Se capping layer¹¹. As the degree of oxidation increases, the area ratio of the Se²⁻ component decreases, while those of Se¹⁻ and Se⁰ increase in Figure **S2d**. Additionally, we clearly confirm that no selenium oxide (SeO_x) component, indicated by the black arrows at 59.90 eV, is observed in any of the samples.

Figure S3. a, Atomic structure of 1T-VSe_2 and rutile VO₂ (R-VO₂). b, Fast Fourier transformation (FFT) patterns of distinct VSe₂ and R-VO₂ phases in the pristine VSe₂^{vc} and VSe₂-HO^{vc} samples described by gray, orange, and blue dashed boxes in Figure 1g,i.

Figure S4. **a,b**, Deconvolution of the O 1*s* peaks of the VSe₂-LO^{vc} (**a**) and VSe₂-HO^{vc} (**b**) films under various conditions: UHV after H₂O exposure and UHV annealing at 200°C. **c,d**, Area ratio of the deconvoluted oxygen components in the VSe₂-LO^{vc} (**c**) and VSe₂-HO^{vc} (**d**) films.

Figure S5. **a,b**, Comparison of the core level XPS spectra of V 2p (**a**) and Se 3d (**b**) measured under UHV and H₂O (0.5 mbar) environments.

Figure S6. Relative Gibbs free energies ΔG of the calculated VSe_{2-x}O_x models presented as a function of the relative oxygen chemical potential $\Delta \mu_0$ under (left) Se-poor and (right) Se-rich conditions. All VSe_{2-x}+*n*O models are depicted by blue solid lines with varying intensity, while the L-VO₂ and VSe_{2-x}+VO₂(100) models are shown in blue and red dashed lines, respectively. The oxygen chemical potential $\Delta \mu_0$ is converted into a temperature scale at partial pressures of

 $O_2 gas ({}^{p}O_2)$ of 0.004 mbar, 0.5 mbar, and 0.2 bar, and it is shown on the upper x-axis.

Figure S7. Surface free energies $(\gamma^{(100),\sigma}_{surf})$ of (1×1) R-VO₂(100) with varying surface coverage of oxygen atoms presented as a function of the relative oxygen chemical potential $\Delta\mu_0$. V-rich, stoichiometric, and O-rich surfaces are depicted by red, yellow, and blue lines, respectively. Their atomic structures are illustrated in the right panel. The reconstructed structure of the Vrich surface, in which the topmost V-O layer transforms into a L-VO₂-sheet-like structure, is indicated by the red dashed line. The thermodynamic stability of R-VO₂ is delineated by two vertical gray dashed lines, representing the formation energies of R-VO₂ and V₂O₅ from left to right, and R-VO₂ remains stable in the range of $\Delta\mu_0$ between these lines.

We calculated the surface free energies of the R-VO₂(100) surfaces as a function of $\Delta\mu_0$ to investigate the phase transformation of oxidized VSe₂ into the R-VO₂ phase (Supplementary Figure S5). The (100) surface was specifically chosen because 1T-like surface reconstructions have been identified in rutile RuO₂(100) ¹³, and VO₂ is expected to exhibit a similar behavior. Three different oxygen coverages ($\Theta_0 = 0.0$, 0.5, and 1.0 ML, representing V-rich, stoichiometric, and O-rich conditions, respectively) were considered within the (1 × 1) surface unit cell. The solid lines in the phase diagram correspond to the locally optimized bulktruncated surfaces for each coverage level. Throughout the $\Delta\mu_0$ range between the formation energies of R-VO₂ and V₂O₅, the stoichiometric surface remained the most stable. As expected, a 1T-like surface reconstruction of the V-rich termination was identified, where the topmost vanadium atom shifted into a subsurface cavity, forming a surface motif resembling the topmost L-VO₂ layer (indicated by the dashed red line in Supplementary Figure **S5**). Intriguingly, this reconstructed surface is more stable than the locally optimized V-rich termination by 0.8 eV/Å², and it even exhibits slightly lower surface energy than the stoichiometric surface near the V-rich limit (denoted by the vertical gray dashed line at the VO₂ formation energy). However, as $\Delta\mu_0$ increases toward more oxidative conditions, the structure rapidly transforms into the stoichiometric structure. This suggests that under oxidative conditions, the outermost VO₂ layer in the VSe_{2-x}+8O model may reconstruct into a rutile-like local structure, as also demonstrated by our experiments.

Figure S8. a-e, Potential energy profile of the DFT-converged NEB calculations for the water dissociation in the VSe_{2-x}O_x models. The activation energy E_a and the enthalpy change ΔE are indicated in each figure. Further details can be found in the main text. **f**, Adsorption energy of water ΔE^{ad}_{H2O} for each model.

Figure S9. a Comparison of VSe₂ samples prepared for two different purposes: surface analysis under vacuum condition (vc) and electrochemical experiments (ec). **b** XPS spectra of V 2*p* and O 1*s* obtained for various samples. **c,d** O 1*s* (**c**) and V 2*p* (**d**) spectra with deconvoluted components for the air-exposed VSe₂ film.

Figure S10. a-c. Electrocatalytic HER stability of the VSe_2^{ec} , VSe_2 -LO^{ec}, and VSe_2 -HO^{ec} samples in a 0.5M H₂SO₄ solution. LSV curves were recorded from the initial cycle up to 20 cycles. During the 20 cycles, the overpotential gradually rises by 14 mV, 26 mV, and 25 mV for respective samples.

Figure S11. **a-c**, Convergence with the kinetic cutoff energy for the wave function (**a**), number of k points (**b**), and thickness of the vacuum layer for VSe_2 (**c**). Total energy difference with respect to the tightest setting result. **d**, Convergence of the H₂O binding energy with respect to the size of the VSe₂ surface supercell. **e–g**, Same as (a–c) but for R-VO₂. **h**, Convergence of the R-VO₂ surface free energy with respect to the number of relaxed atomic layers.

Figure S12. **a,b**, Band structures of bulk VSe₂ (**a**), bulk L-VO₂ (**b**), and bulk R-VO₂ (**c**). The upper panels display the spin-polarized results, while the lower panels are derived from nonmagnetic calculations. In the 0 K DFT calculations, the ferromagnetic states of bulk VSe₂, bulk L-VO₂, and bulk R-VO₂, are slightly more stable than their nonmagnetic counterparts by -0.08, -0.21, and -0.19 eV per formula unit, respectively.

References

(1) Yeh, J. J.; Lindau, I. Atomic Subshell Photoionization Cross Sections and Asymmetry Parameters: $1 \le Z \le 103$. *Atomic Data and Nuclear Data Tables* **1985**, *32* (1), 1–155. https://doi.org/10.1016/0092-640X(85)90016-6.

(2) Powell, C. J.; Jablonski, A.; Tilinin, I. S.; Tanuma, S.; Penn, D. R. Surface Sensitivity of Auger-Electron Spectroscopy and X-Ray Photoelectron Spectroscopy. *Journal of Electron Spectroscopy and Related Phenomena* **1999**, *98–99*, 1–15. https://doi.org/10.1016/S0368-2048(98)00271-0.

(3) Powell, C. J.; Jablonski, A.; Naumkin, A.; Kraut-Vass, A.; Conny, J. M.; Rumble, J. R. NIST Data Resources for Surface Analysis by X-Ray Photoelectron Spectroscopy and Auger Electron Spectroscopy. *Journal of Electron Spectroscopy and Related Phenomena* **2001**, *114–116*, 1097–1102. https://doi.org/10.1016/S0368-2048(00)00252-8.

(4) Brundle, C. R.; Crist, B. V. X-Ray Photoelectron Spectroscopy: A Perspective on Quantitation Accuracy for Composition Analysis of Homogeneous Materials. *Journal of Vacuum Science & Technology A* **2020**, *38* (4), 041001. https://doi.org/10.1116/1.5143897.

(5) Zhang, X.; Li, J.; Xiao, P.; Wu, Y.; Liu, Y.; Jiang, Y.; Wang, X.; Xiong, X.; Song, T.; Han, J.; Xiao, W. Morphology-Controlled Electrocatalytic Performance of Two-Dimensional VSe2 Nanoflakes for Hydrogen Evolution Reactions. *ACS Appl. Nano Mater.* **2022**, *5* (2), 2087–2093. https://doi.org/10.1021/acsanm.1c03812.

(6) Liu, S.; Liu, S.; Huang, Z.; Liu, Y.; Qi, X. 2D Vanadium Diselenide as a High Performance Catalyst. *Materials Science and Engineering: B* **2020**, *260*, 114619. https://doi.org/10.1016/j.mseb.2020.114619.

(7) Chia, X.; Ambrosi, A.; Lazar, P.; Sofer, Z.; Pumera, M. Electrocatalysis of Layered Group 5 Metallic Transition Metal Dichalcogenides (MX_2 , M = V, Nb, and Ta; X = S, Se, and Te). *Journal of Materials Chemistry A* **2016**, *4* (37), 14241–14253. https://doi.org/10.1039/C6TA05110C.

(8) Zhu, Q.; Shao, M.; Yu, S. H.; Wang, X.; Tang, Z.; Chen, B.; Cheng, H.; Lu, Z.; Chua, D.; Pan, H. One-Pot Synthesis of Co-Doped VSe₂ Nanosheets for Enhanced Hydrogen Evolution Reaction. *ACS Appl. Energy Mater.* **2019**, *2* (1), 644–653. https://doi.org/10.1021/acsaem.8b01659.

(9) Kwon, I. S.; Kwak, I. H.; Zewdie, G. M.; Lee, S. J.; Kim, J. Y.; Yoo, S. J.; Kim, J.-G.; Park, J.; Kang, H. S. WSe2–VSe2 Alloyed Nanosheets to Enhance the Catalytic Performance of Hydrogen Evolution Reaction. *ACS Nano* **2022**, *16* (8), 12569–12579. https://doi.org/10.1021/acsnano.2c04113.

(10) Zhao, W.; Dong, B.; Guo, Z.; Su, G.; Gao, R.; Wang, W.; Cao, L. Colloidal Synthesis of VSe₂ Single-Layer Nanosheets as Novel Electrocatalysts for the Hydrogen Evolution Reaction. *Chemical Communications* 2016, 52 (59), 9228–9231. https://doi.org/10.1039/C6CC03854A.

(11) Sayers, C. J.; Farrar, L. S.; Bending, S. J.; Cattelan, M.; Jones, A. J. H.; Fox, N. A.; Kociok-Köhn, G.; Koshmak, K.; Laverock, J.; Pasquali, L.; Da Como, E. Correlation between Crystal Purity and the Charge Density Wave in 1T-VSe₂. *Phys. Rev. Mater.* **2020**, *4* (2), 025002. https://doi.org/10.1103/PhysRevMaterials.4.025002.

(12) Bonilla, M.; Kolekar, S.; Li, J.; Xin, Y.; Coelho, P. M.; Lasek, K.; Zberecki, K.; Lizzit, D.; Tosi, E.; Lacovig, P.; Lizzit, S.; Batzill, M. Compositional Phase Change of Early Transition Metal Diselenide (VSe₂ and TiSe₂) Ultrathin Films by Postgrowth Annealing. *Advanced Materials Interfaces* 2020, 7 (15), 2000497.

(13) Lee, Y.; Timmermann, J.; Panosetti, C.; Scheurer, C.; Reuter, K. Staged Training of

Machine-Learning Potentials from Small to Large Surface Unit Cells: Efficient Global Structure Determination of the RuO2(100)-c(2×2) Reconstruction and (410) Vicinal. J. Phys. Chem. C 2023, 127 (35), 17599–17608. https://doi.org/10.1021/acs.jpcc.3c04049.