Supporting information

Microwave shock-driven thermal engineering of unconventional

cubic 2D LaMnO₃ for efficient oxygen evolution

Jiao Dai,‡ª Mingjie Wang,‡ª,c Haoran Tian,‡ª Wenhui Fan,ª Kaisi Liu,ª Weilin Xu,ª

Huiyu Jiang,*b Huanyu Jin,*c and Jun Wan*a

^a State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China.

^b School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.

^c Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

[‡] These authors contributed equally to the work.

* **Correspondence to:** Prof. Jun Wan, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 1 Sunshine Avenue, Jiangxia District, Wuhan 430200, Hubei, China. E-mail: wanj@wtu.edu.cn; Prof. Huiyu Jiang, School of Textile Science and Engineering, Wuhan Textile University, 1 Sunshine Avenue, Jiangxia District, Wuhan 430200, Hubei, China. Email: huiyujiang@wtu.edu.cn;

Prof. Huanyu Jin, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. E-mail: hy.jin2@siat.ac.cn

Supplementary Materials

- 1. Figure. S1 to S14
- 2. Table S1 to S3
- 1. Figure. S1 to S12

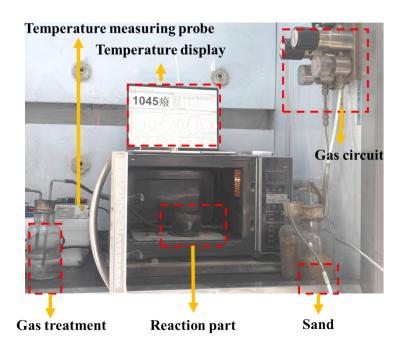
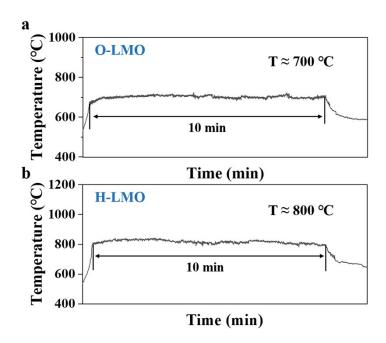



Fig. S1 Physical picture of microwave impact equipment.

Fig. S2 Infrared real-time monitoring of O-LMO and H-LMO temperature map.

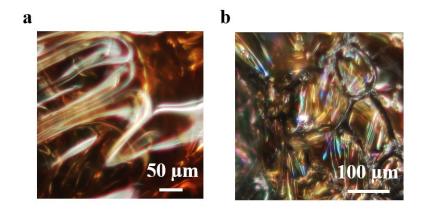


Fig. S3 Optical microscopy images during the synthesis process.

Volume expansion

Fig. S4 Physical-optical photographs before and after the reaction.

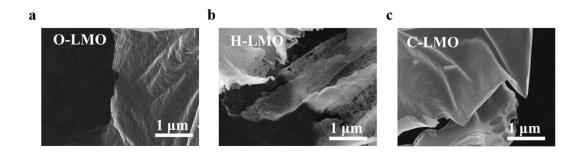


Fig. S5 SEM image of LMO.

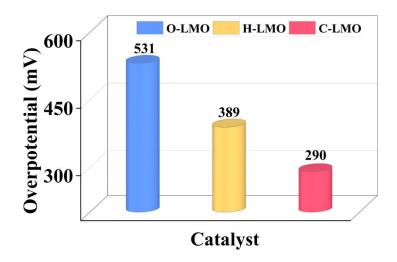


Fig. S6 Overpotential statistics of O-LMO, H-LMO, C-LMO.

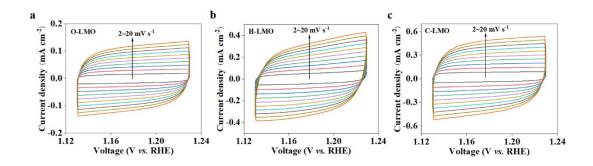


Fig. S7 CV measurements in a non-faradic current region (1.13-1.2 3V) at scan rates of 2 to 20 mV s⁻¹ of (a) O-LMO, (b) H-LMO, (c) C-LMO in N₂-saturated 1.0 M KOH solution.

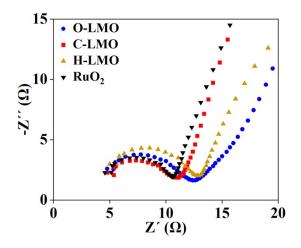


Fig. S8 Nyquist plots of O-LMO, H-LMO, C-LMO and RuO₂ catalysts.

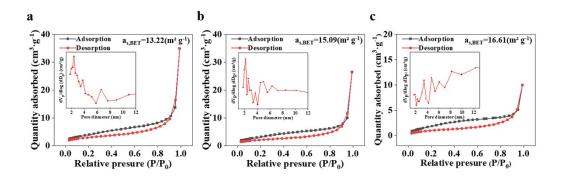


Fig. S9 BET diagram for (a) O-LMO, (b)H-LMO and (c) C-LMO.

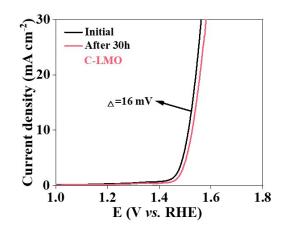


Fig. S10 The durability tests of C-LMO catalysts.

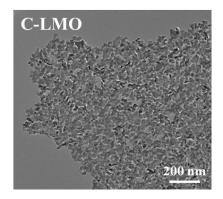
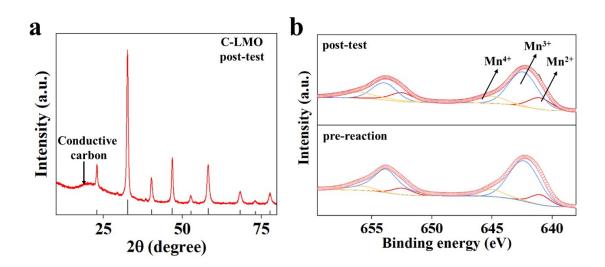
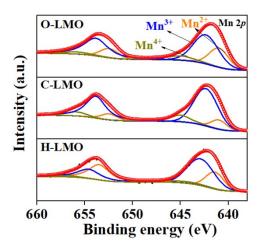




Fig. S11 TEM images of C-LMO catalysts after durability tests.

Fig. S12 (a) XRD features images of C-LMO catalysts after durability tests, (b) Mn 2*p* XPS Data before and after durability testing.

Fig. S13 High-resolution XPS spectra of Mn 2*p* features of O-LMO, H-LMO, C-LMO catalysts.

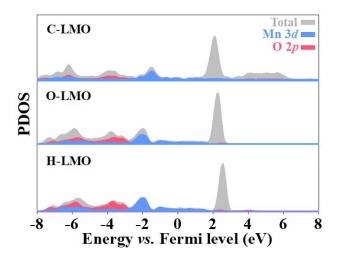


Fig. S14 Comprehensive PDOS for various elements in O-LMO, H-LMO, C-LMO catalysts.

2. Table S1 to S3

	Electrocatalysts	Mass loading (mg cm ⁻¹)	Overpotential (mV vs. RHE)	Tafel slope (mV dec ⁻¹)	reference
This-work	C-LaMnO ₃	0.52	290	66.21	This-work
Ref. 1	LaCoO ₃	0.142	420	140	J. AlloysCompd. 2017, 725, 260.
Ref. 2	LaFeO ₃	0.407	466	90	Angew. Chem. Int. Ed. 2019,18.
Ref.3	NdFeO ₃	N/A	370	79	Int. J. Hydrogen Energy. 2022, 47, 14542.
Ref.4	$BaLa_2MnS_5$	N/A	338	108	J. Chin. Chem. Soc. 2024, 71, 1008.
Ref.5	LaNiO ₃ /C	0.250	426	119	Chem. 2019, 7, 2019.
Ref.6	LaCoO ₃	N/A	470	180	Chem. 2017. 3. 812.
Ref.7	LaFeO ₃	0.255	430	157	ACS Appl. Mater. Inter. 2020, 12, 4125963
Ref.8	$La_{0.6}Sr_{0.4}CoO_{3-\delta}$	N/A	420	99	Electrochim. Acta. 2019, 327, 135033 49
Ref.9	LaCoO ₃	0.25	450	144	Energy Storage Mater. 2021, 42, 470 68
Ref.10	$SrCo_{0.9}Ru_{0.1}O_{3-\delta}$	N/A	360	113	Small 2019, 15, 1903120

Table S1. The OER performance comparison of different catalysts.

 Table S2. Parameters of LMO from Rietveld refinement.

	O-LMO	H-LMO	C-LMO
χ^2	1.91	1.98	1.90
$R_{ m wp}$	5.23%	4.23%	5.0%
$R_{ m P}$	3.84%	3.08%	3.75%

		O-LMO	H-LMO	C-LMO
Space group		Pnma	R-3c:H	Pm-3m
	а	5.565Å	5.529Å	3.887Å
	b	8.031Å	5.529Å	3.887Å
	с	5.563Å	13.366Å	3.887Å
Lattice parameters	α	90°	90°	90°
	β	90°	90 °	90°
	γ	90°	120°	90°
	V(Å ³)	248.678Å ³	353.949Å ³	58.763Å ³

 Table S3. Detailed lattice parameters of O-LMO, H-LMO and C-LMO.