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1. Materials and Methods
Materials

Ni(NOj3),-6H,0, FeCl;, NH4F, urea and imidazole are all analytical pure from
Shanghai Aladdin Biochemical Technology, China. Nickel foam (NF) was purchased
from Suzhou Ke Sheng Metal Materials company, China. Nafion solution (5% in
isopropanol) was supplied by Sigma-Aldrich, Germany.

Synthesis of Ni(OH),

The nickel foam (NF) was ultrasonically cleaned in acetone, ethanol, 3 M HCI and
ultrapure (UP) water for 10 minutes each. A solution was prepared by dissolving 1
mmol Ni(NOs),-6H,0, 4 mmol NH,4F, and 5 mmol CO(NH,); in 15 mL UP water and
transferred to a 22 mL Teflon-sealed autoclave. A piece of cleaned NF was diagonally
placed in the solution, then it was heated to 120 °C at a rate of 5 °C / min and maintained
for 8 h. After natural cooling, the NF was rinsed three times with UP water, yielding
Ni(OH), grown on the NF.

Synthesis of Ni-MOF

A circular quartz tube (2.5 cm in diameter, 10 cm in length) was used as the reaction
vessel. Imidazole powder (10 mmol) was placed at the sealed end, with a piece of nickel
foam (NF) coated with Ni(OH), positioned at the tube’s midpoint. The system was then
heated to 280 °C at a rate of 5 °C/min under a nitrogen atmosphere in a tube furnace
and held at this temperature for 1 hour. After natural cooling, the Ni-MOF grown on
NF was carefully retrieved from the quartz tube.

Synthesis of Fe/Ni-MOF

The Ni-MOF was etched using a 0.15 M FeCl; solution for 15 minutes at room
temperature. The resulting product was then thoroughly washed with UP water until
the filtrate turned colorless, followed by drying in a vacuum oven to obtain Fe/Ni-MOF
grown on NF. Control samples were prepared by etching Ni-MOF in FeCl; solutions
of varying concentrations (0.01, 0.05, 0.1, 0.2, and 0.25 M) for 15 minutes, or by
treating with 0.15 M FeCl; solution for 5, 10, 20, and 25 minutes to determine the
optimal etching conditions.

Synthesis of Fe/Ni(OH),
Fe/Ni(OH), grown on NF was prepared following a similar protocol to that used for
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Fe/Ni-MOF, with the primary difference being the substitution of Ni-MOF with
Ni(OH),.
Electrochemical Measurements
Potential Calibration

All electrochemical measurements were conducted on a CHI-760E electrochemical
workstation with a conventional three-electrode configuration in 1 M KOH. Potentials
were calibrated to the reversible hydrogen electrode (RHE) using the equation:

Epyp=E 4~ AV - 50%iR

measure

The zero intercept (AV, —0.919 V) was determined through the cyclic voltammetry
(CV) of the hydrogen electrode reaction of Pt in 1 M KOH saturated with H,. The
electrolyte resistance (R) was approximately 1.7 €, and all the potential has been
calibrated to RHE (Egyg).
Electrode Preparation

A Hg/HgO electrode (filled with 1 M KOH) and a carbon rod (5 mm diameter, 8 cm
length) were served as the reference and counter electrode, respectively. Ni(OH),, Ni-
MOF, Fe/Ni(OH),, and Fe/Ni-MOF samples (1 cm x 1 cm) were directly affixed to the
working electrode for electrochemical tests. Specifically, the working electrode is
clamped with an electrode clamp, and the exposed portion (0.6 cm X 1 cm) of the
electrode is just immersed into the solution. For IrO,, a conventional electrocatalyst ink
was prepared and deposited onto a rotating disk electrode (RDE) with a loading of 0.5
mg/cm?, using several drops of 0.1% Nafion solution to secure the electrocatalyst on
the electrode.
Electrochemical Test Methods

Prior to characterization, all electrocatalysts underwent an activation process, which
involved continuous CV scanning from 1.22 V to 1.77 V at a rate of 0.5 V/s until the
last two cycles converged. CV curves were recorded from 1.22 V to 1.77 V at a
scanning rate of 2 mV/s, with the negative-sweep half-cycle taken as the LSV curves.
Tafel plots were generated from the linear regions of the LSV curves at low
overpotentials and fitted to the Tafel equation:
n=blogj+ a
where 1 is overpotential, j is current density, and b is the Tafel slope.
Electrochemical impedance spectroscopy (EIS) measurements were performed at the
open circuit potential (OCP). The current density near OCP showed a linear dependence
on scanning rates, with the slope used to estimate the double-layer capacitance (Cdl).
CVs were conducted over the range OCP + 50 mV with scanning rates of 20, 40, 60,
80, 100, 120, and 140 mV/s, measuring current density at OCP to determine Cg. The
electrochemically active surface areas (ECSA) of Ni(OH),, Ni-MOF, Fe/Ni(OH),, and
Fe/Ni-MOF were calculated as:

ECSA = Cdl/Cs

where C; is the specific capacitance, treated as a constant for similar materials.
Continuous CV was conducted from 1.22 to 1.77 V at a scan rate of 50 mV/s.

Chronoamperometric tests on Fe/Ni-MOF were performed at current densities of 10,
100, and 200 mA/cm?.



In-situ Raman and UV spectra were collected after 20 minutes of operation at the
specified voltages.

2.First-Principal Calculation

Density functional theory (DFT) calculations were conducted using the CASTEP
module within the Materials Studio program developed by Bio Accelrys. The
exchange-correlation interactions were modeled using the generalized gradient
approximation (GGA) with the Perdew-Burke-Ernzerh (PBE) functional.! 2 Ultrasoft
pseudopotentials were employed to account for interactions between valence electrons
and ionic cores. The crystal structure of NiFe layered double hydroxide (LDH) was
adopted from the literature.’

A four-layer 2 x 2 supercell of (001) slabs, both with and without an adsorbed
carbonate ion, was constructed to simulate NiFe LDH and COs-NiFe LDH,
respectively. In this configuration, each of the carbonate ion’s oxygen atoms bonds to
a Ni and an Fe atom, while the Ni/Fe atomic ratio remains 1:1. For each model, a
vacuum gap of 15 A was applied, with the atoms in the bottom two layers fixed and all
other atoms fully optimized. Electronic wave functions were expanded on a plane wave
basis with a cut-off energy of 380 eV, while a 2 x 2 x 1 Monkhorst-Pack grid k-point
sampling was used for geometric optimizations. The convergence thresholds were set
to 1 x 10 eV in energy and 0.02 eV/A in force. Additionally, van der Waals
interactions were described using the DFT-D2 method by Grimme.*

The adsorption free energies for intermediates OH ad, O ad, and OOH_ad were
calculated using the formula AG = AE + AZPE — TAS, where AE, AZPE, and AS
correspond to the binding energy, zero-point energy change, and entropy change of the
adsorption process, respectively.> ©
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Figure S1 (a) XRD patterns and (b) SEM image of Ni(OH),.



Figure S2 Unit cell atom model of Ni-MOF.
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Figure S3 TEM image (a), line scanning (b), HRTEM image, HRTEM image with
lattice spacing (d) of Fe/Ni-MOF. Red circle in (¢): Fe(OH); nanoparticles.
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Figure S4 The atomic concentrations of C, N, O, Ni, and Fe in Fe/Ni-MOF compared with Ni-

MOF.
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Figure S5 CV curves between OCP + 50 mV for Ni(OH), (a), Fe/Ni(OH), (b), Ni-
MOF(c) and Fe/Ni-MOF(d) at scan rates of 20, 40, 60, 80, 100, 120, 140 mV s™'.
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Figure S6 ECSA-normalized LSV curves of Ni(OH), (a), Fe/Ni(OH), (b), Ni-MOF(c)
and Fe/Ni-MOF(d).
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Figure S7 LSV curves (a) and Tafel plots (b) of Ni-MOF immersed in FeCl; solution
with various concentrations (1 mM to 250 mM) for 15 minutes. LSV curves (c) and
Tafel plots (d) of Ni-MOF immersed in 0.15 M FeCl; solution for durations ranging

from 5 to 25 minutes.
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Figure S8 SEM images of Fe/Ni-MOF etching with 0.05 M (a) and 0.25 M (b) FeCls for 15
min, and 0.15 M for 5 min (d) and 25 min (e). ICP-OER results of Fe/Ni-MOF etching with
0.05/0.15/0.25 M FeCls for 15 min (c) and 0.15 M for 5/15/25 min (e).
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Figure S9 XRD pattern of Fe/NiOOH.



Figure S11 HAADF-STEM (a), EDS elemental mapping of C (b), Ni (¢), Fe (d) and O
(e) of Fe/NiOOH.
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Figure S12 The high-resolution XPS spectra of C 1s (a), N 1s (b), O Is (c), Ni 2p (d),
Fe 2p (e) and the atomic concentrations of O, C, N, Ni and Fe (f) of Fe/Ni-MOF and

Fe/NiOOH.
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Figure S13 FT-IR spectroscopy of Fe/Ni(OH),, a-Fe/Ni(OH), and Fe/NiOOH (a), and

Fe/NiOOH with different durations at current density of 200 mA c¢cm- (b).



Figure S14 The front view (a), top view (b), and side view (c) of COs*-adsorbed

Fe/NiOOH models.

Table S1 Atomic parameters of Ni-MOF.

Phase data

Space-group

P b ¢ n (60) - orthorhombic
a=7.388(3) A b=8.755(4) A c=10.489(4) A

Cell a/b=0.8439 b/c=0.8347 c/a=1.4197
V=678.45(50) A3 Z=4
Atomic parameters
Atom Wyck. Site x/a y/a z/c U [A?]
Nil 4c 2. 0 0.56710(3) 1/4
NI 8d 1 0.1592(2) 0.41864(15) 0.31673(16)
N2 8d 1 0.3531(2)  0.22466(15)  0.31590(15)
C1 8d 1 0.2163(2) 0.20191(19) 0.2571(2)
H1 8d 1 0.167(3) 0.258(2) 0.182(2) 0.0270
C2 8d 1 0.2686(3) 0.4305(2) 0.4221(2)
H2 8d 1 0.254(4) 0.509(2) 0.482(2) 0.0330
C3 8d 1 0.3865(3) 0.3125(2) 0.42149(19)
H3 8d 1 0.487(3) 0.288(2) 0.478(2) 0.0320

Table S2. Comparisons of OER performance for various electrocatalysts in 1.0 M KOH

from other publications

Overpotential @10 mA Tafel slope
Catalyst
cm? [mV] [mV dec! ]
Fe/Ni-MOF 188 32 (this work)
Co-C/ZIF@CC (0.4 W) 290 59 7
(Ni,Fe)P(S,Se); 210 34 8




Co/Aza-CMP/CP 289 44 9

a-NiCo/NC 252 49 10
CoFe-N-C 360 68 1
W-NiSO'5S€0_5 171 41 12
CoFeWO, 211 32 13
Ni/NiFeMoO, 255 35 14
Ni-ZIF/Ni-B@nf 234 57 15
NiTe/NiS 209 49 16
VCoCOy@NF 240 64 17
CuO@CoOOH/CF 186 51.7 18
(Ni2C01)0‘925F60_075—MOF 257 41.3 19
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