Supporting Information

Heterostructure Design of Mn-Ni(OH)₂@1T-MoS₂ for Enhanced Aqueous Asymmetric Electrochemical Capacitor

Qingyun Liu $^{a,\ast},$ Yi Wang b,c , Tianzhao Hu $^{b,c},$ Shaorui Chen b,c , Yaozu Wang b,c , Hui

Zhao ^a, Zhigang Yuan ^a, Wu Zhang ^a, Yulian Wang ^a, Zhenhua Sun ^{b,c}, Feng Li ^{b,c,*}

^a School of Materials Science and Engineering, Shenyang Ligong University,

Shenyang 110159, China;

^b Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

^c School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China

*Corresponding author: qyliu@sylu.edu.cn; fli@imr.ac.cn

Fig. S1 Particle size distribution histograms of Mn-Ni(OH)₂ particles.

Fig. S2 EDS analysis of (a) Mn-Ni(OH)₂ and (b) Mn-Ni(OH)₂@1T-MoS₂.

Fig. S3 GCD curves of Mn-Ni(OH)₂@1T-MoS₂ with mass ratio of 1:0.1, 1:0.13, and 1:0.2 at 1A g⁻¹.

Fig. S4 (a) Low resolution and (b) high resolution SEM images of Mn-Ni(OH)_2/1T- $\ensuremath{\text{MoS}_2}$

Fig. S5 XRD spectra of 1T-MoS₂ and standard PDF of 2H-MoS₂

Fig. S6 (a) Raman spectra of Mn-Ni(OH)₂@1T-MoS₂; 1T-MoS₂ and Mn-Ni(OH)₂ XPS spectra of (b) O 1s and (c) Mn 2p for Mn-Ni(OH)₂@1T-MoS₂, Mn-Ni(OH)₂/1T-MoS₂ and Mn-Ni(OH)₂.

Fig. S7 Equivalent circuit model of Nyquist plots in Fig. 3(a).

Fig. S8 CV curves of (a) Mn-Ni(OH)₂@1T-MoS₂, (b) Mn-Ni(OH)₂/1T-MoS₂, and (c)
Mn-Ni(OH)₂ electrodes at scan rates ranging from 5 to 100 mV s⁻¹. (d) Relationship of anodic peak currents and scan rates for the as-prepared electrodes.

Fig. S9 GCD curves at various current densities from 1 A g⁻¹ to 12 A g⁻¹ of (a) Mn-Ni(OH)₂@1T-MoS₂, (b) Mn-Ni(OH)₂/1T-MoS₂ and (c) Mn-Ni(OH)₂ electrodes.

Fig. S10 CV curves at various current densities from 5 mV s⁻¹ to 100 mV s⁻¹ of (a)
Mn-Ni(OH)₂@1T-MoS₂, (b) Mn-Ni(OH)₂/1T-MoS₂ and (c) Mn-Ni(OH)₂ electrodes in non-redox potential region (0.05 V - 0.21 V vs. Hg/HgO).

Fig. S11 CV curves at (a)various voltages from 1.1 V to 1.8 V and at (b) different

scan rate from 5 mV s⁻¹ to 100 mV s⁻¹ of Mn-Ni(OH)₂@1T-MoS₂.

Fig. S12 GCD curves at various current densities from 1 A g⁻¹ to 12 A g⁻¹ of (a) Mn-

Ni(OH)₂/1T-MoS₂//AC and (b) Mn-Ni(OH)₂//AC.

The specific capacity (C_A , mAh g⁻¹) was calculated using Equation S1 based on the discharge curve in GCD curves¹,

$$C_{A} = \frac{I \times \Delta t}{3.6 \times m}$$
 Equation S1

where I, m and Δt are the discharge current (A), the mass of active material (g) and the discharge time (s), respectively.

The relationship between the anodic peak currents (i) and scan rates (v) can be described by

whrer a and b represent empirical parameters².

The ECSA of the electrode can be calculated according to Equation $S2^3$,

$$ECSA = Cdl of electrode (mF cm^{-1})/0.04 (mF cm^{-1})$$
 Equation S3

The ESR can be determined from a linear fit to the values for the IR_{drop} obtained from the GCD curves in Fig. S6 and Fig. 4d. This behavior is shown in Fig. 4e, according to Equation S3⁴,

where a represents the difference between the applied potential and the charged potential of the capacitor, b represents double the ESR value.

The power density (P, W kg⁻¹) and energy density (E, Wh kg⁻¹) of the ASCs were calculated by Equation S4 and S5,

$$E = \frac{C_A \times \Delta V}{2}$$
Equation S5
$$P = \frac{3600 \times E}{\Delta t}$$
Equation S6

where C_A , ΔV , Δt are the specific capacity (C_A , mAh g⁻¹), operating voltage (V) and discharge time (s) of the ASCs, respectively.

Electrodes	Mn-Ni(OH) ₂ @1T-MoS ₂	@1T-MoS ₂ Mn-Ni(OH) ₂ /1T-MoS ₂	
R _s (Ω)	1.24	1.28	1.22
$R_{ct}(\Omega)$	0.17	0.35	1.12
CPE1-T(Ω)	0.0030117	0.00043701	0.01452
CPE1-P(Ω)	0.86386	0.96999	0.668
$R_2(\Omega)$	3247	2339	7883
CPE2-T(Ω)	0.001469	0.0017805	0.003137
CPE2-P(Ω)	0.89943	0.87256	0.90193

Table S1 The fitting values derived from the equivalent circuit using the Zview software.

Electrodes	Electrolyte	Specific capacitance (mAh g ⁻¹)	Rate capability	Refs.
Mn-Ni(OH) ₂ @1T-MoS ₂	1M KOH	244.2(1 A g ⁻¹)	51.4%(1-12 A g ⁻¹)	
Mn-Ni(OH) ₂ /1T-MoS ₂	1M KOH	112.2(1 A g ⁻¹)	43.1%(1-12 A g ⁻¹)	This work
Mn-Ni(OH) ₂	1M KOH	70.4(1 A g ⁻¹)	39.2(1-12 A g ⁻¹)	WOIK
Ni(OH) ₂ @EG-DP	2M KOH	266(1 A g ⁻¹)	76%(1-20 A g ⁻¹)	5
Ni(OH)2@NHCSs	2M KOH	214.8(1 A g ⁻¹)	51.7%(1-16 A g ⁻¹)	6
NiCo LDH/IPC	1M KOH	209.7(1 A g ⁻¹)	-	7
Co ₃ O ₄ @Ni(OH) ₂	6M KOH	253.3(1 A g ⁻¹)	70.4%(1-20 A g ⁻¹)	8

Table S2 Comparison of the electrochemical performance of Ni(OH)₂-based electrodes in a three-electrode system

Supercapacitors	Energy density (Wh kg ⁻¹)	Power density (W kg ⁻¹)	Cycle number	Stability	Refs.	
MCMS-50 //NiCo ₂ O ₄	48.96	600	10000	86.5% (10 A g ⁻¹)	9	
NiMn-LDH/PC-1//AC	18.6	225.0	3000	58.2% (15 A g ⁻¹)	10	
Co-Ni oxide-hydroxide//exfoliated graphite	5	416	2000	80% (2.5 mA cm ⁻²)	11	
Ni(OH)2@EG-DP//AC	62.6	748.6	20000	84.5 % (8 A g ⁻¹)	5	
Ni(OH) ₂ //active carbon	35.7	490	10,000	76% (100 mV s ⁻¹)	12	
NiMn-LDH//AC	62.7	375.2	3000	100% (5 A g ⁻¹)	13	
Ni(OH)2@NHCSs NHCSs	37.5	800.0	10000	79.2% (8 A g ⁻¹)	6	
NiCo LDH/IPC IPC	29.6	744	4000	88% (2 A g ⁻¹)	7	
Co-CH@Ni-MOFs//AC	58.0	800.0	6000	80.7% (10 A g ⁻¹)	14	
NiCo-LDH/rGO//CAC	49	401	2000	81% (2 A g ⁻¹)	15	
Co ₃ O ₄ @Ni(OH) ₂ //AC	49.8	801.0	2000	93.0% (6 A g ⁻¹)	8	
Ni ₃ S ₂ /Mn-doped Ni(OH) ₂ //AC-RGO	51.5	404.0	5000	85.3% (2.82 A g ⁻¹)	16	
Co ₃ O ₄ @Mn-Ni(OH) ₂ /CC//AC	65.5	800.0	10000	93.0% (5 A g ⁻¹)	17	
Mn-Ni(OH)2@1T-MoS2//AC	61.7	600	10000	72.7 % (5 A g ⁻¹)		
Mn-Ni(OH) ₂ /1T-MoS ₂ //AC	34.4	600	10000	13.8% (5 A g ⁻¹)	This	
Mn-Ni(OH) ₂ //AC	12.0	600	10000	66.7% (5 A g ⁻¹)	WUIK	

Table S3 Comparison of electrochemical performance of Ni(OH)₂-based ACSs

Reference

- 1. Q. Bi, Q. Ma, K. Tao and L. Han, *Dalton Trans.*, 2021, **50**, 8179-8188.
- Y. Ma, L. Zhang, Z. Yan, B. Cheng, J. Yu and T. Liu, *Adv. Energy Mater.*, 2022, 12, 2103820.
- 3. H. Liang, A. N. Gandi, D. H. Anjum, X. Wang, U. Schwingenschlogl and H. N. Alshareef, *Nano Lett.*, 2016, **16**, 7718-7725.
- 4. A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D. N. Futaba, H. Hatori, M. Yumura, S. Iijima and K. Hata, *Adv. Mater.*, 2010, **22**, E235-E241.
- 5. Y. Huang, A. Buffa, H. Deng, S. Sarkar, Y. Ouyang, X. Jiao, Q. Hao and D. Mandler, *J. Power Sources*, 2019, **439**, 227046.
- 6. G. Wang, Z. Yan, Y. Ding, Z. Xu and Z. Li, *J. Colloid Interface Sci.*, 2022, **628**, 286-296.
- X. Zhang, Q. Lu, E. Guo, J. Feng, M. Wei and J. Ma, J. Energy Storage, 2021, 38, 102514.
- X. Zhang, J. Xiao, X. Zhang, Y. Meng and D. Xiao, *Electrochim. Acta*, 2016, **191**, 758-766.
- 9. A. Mukherji, L. Saikia and R. Srivastava, *Chem. Eng. J.*, 2019, **373**, 1233-1246.
- 10. M. Yu, R. Liu, J. Liu, S. Li and Y. Ma, *Small*, 2017, **13**, 1702616.
- 11. P. G. Schiavi, P. Altimari, R. Zanoni and F. Pagnanelli, J. Energy Chem., 2021, 58, 336-344.
- H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong and G. W. Yang, *Nat. Commun.*, 2013, 4, 1894.
- Z. Zhang, H. Huo, L. Wang, S. Lou, L. Xiang, B. Xie, Q. Wang, C. Du, J. Wang and G. Yin, *Chem. Eng. J.*, 2021, 412, 128617.
- 14. X. Zhang, S. Yang, W. Lu, Y. Tian, Z. Liu, Y. Zhao and A. Liu, *Small*, 2022, **18**, e2200656.
- L. Liu, A. R. Liu, Y. H. Xu, H. M. Yu, F. Q. Yang, J. Wang, Z. L. Zeng and S. G. Deng, J. Mater. Res., 2020, 35, 1205-1213.
- 16. L. Ye, Y. Zhou, Z. Bao, Y. Zhao, Y. Zou, L. Zhao and Q. Jiang, *J. Mater. Chem. A*, 2018, **6**, 19020-19029.
- 17. G. Wang, Y. Ding, Z. Xu, G. Wang, Z. Li and Z. Yan, Chem. Eng. J., 2023, 469, 143984.