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Table S1. Criteria for Water Stability Classifications.!

Category Criteria

Thermodynamically stable  stable after long-term exposure to aqueous solutions: week or
greater in pure water, day(s) in acidic/basic or boiling
conditions

strong potential for a wide range of applications

High kinetic stability stable after exposure to high humidity conditions:
decomposes after short exposure times in liquid water
strong potential for industrial applications with high humidity
conditions

Low kinetic stability stable under low humidity conditions

potential for applications with predried gas conditions

unstable quickly breaks down after any moisture exposure

potential for applications under moisture-free conditions

Table S2. Examples of keywords used in string matching methods for locating water stability

verification paragraphs.

Keyword relevant description in the original literature

as well as in boiling water for 24 h. The PXRD patterns of treated samples

water )
are well retained
maintain its crystallinity and structural integrity after exposure to air for
aqueous 3months, or immersion in water and aqueous solutions of pH1 and 12 for
3days
tabl sample was soaked in water for 5 days; the PXRD patterns demonstrated
stable . .
that its framework remained stable
humidit The results reveal that the structural integrity of TIFSIX-2-Cu-i was
umidi 1
Y unaffected by humidity , as was the BET surface area
H,O Their frameworks remain stable under H20 for 2 months and in particular
retains high crystallinity and is resistant to water upon exposure to aqueous
exposure ,
solutions
collapse collapse to nonporous amorphous materials after water vapor isotherm
tabl loses crystallinity in water within minutes, loses crystallinity in air over
unstable o
several hours or days, desolvated sample unstable in air
Full loss of BET surface area and loss of peaks in PXRD after vapor
vapor

adsorption isotherm in air at 298 K.



the CO,uptakes were minimally affected by moisture exposure/ found to be

moisture )
unstable when exposed to moisture

Table S3. Data distribution of the combined dataset obtained according to the 3-class strategy.

Stable(S) High-stability (HS) Low-stability (LS)
Category tags 2 1 0
Numbers 114 107 90

Figure S1. Data distribution of the combined dataset obtained according to the 3- and 2-class

strategy.
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Table S4. Data distribution of the combined dataset obtained according to the 2-class strategy.

High-stability (HS) Low-stability (LS)
Category tags 1 0
Numbers 221 90

Text S1. Revised autocorrelation functions (RACs)? is an improved compact vector descriptor
based on Autocorrelation functions (ACs), which is stable for different system sizes and
compositions and does not change with the change of bond lengths and bond orders.RACs are
based on different attribute values for each different connection depth of a particular molecular
graph vertex, and the related formulas are shown in (1.1)~(1.4):
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An example of a RAC descriptor: D-mc-Z-3-all is calculated based on the atomic nuclear
charge number (-Z) property, using metal atoms as the starting atoms (-mc), with a maximum
bonding depth of 3 (-3), covering all atoms within the entire unit cell (-all), and formulated as
a "difference" (D-) type descriptor.

Schematic of RACs?

start: {lc, mc, f}

property: {x,Z,T,S,1}

scope: {eq,ax,all} @ depth

Five heuristic atomic properties are employed in this research : (i) nuclear charge, Z (ii)
Pauling electronegativity, y (iii) topology(coordination number), T (iv) identity, I (v) covalent
atomic radius, S. We apply these properties to the product and difference forms, respectively,
and take the maximum depth of 3 to compute all RAC descriptors. In the case of linker
connecting atom centered and functional group centered RACs, an additional atom-wise
property polarizability (o) was considered.’ A total of 176 RACs were generated, with the
specific types and numbers shown in Table S5.



Table S5. The different kinds of RACs descriptors used in this study and their number.

type of starting points type and number of descriptors
metal centered 20 products, 20 differences
functional group centered 24 products, 24 differences

full 20 products

full linker 20 products

linker connecting atom centered 24 products, 24 differences

Text S2. Smoothed Overlap of Atomic Positions (SOAP) is a descriptor that encodes
geometrical regions of atoms by using local expansions of Gaussian-coated atomic densities
and orthogonal functions based on spherical harmonic functions and radial basis functions.
SOAP allows for quantification of similarity between atoms without being constrained by
discretisation or specific coordination coefficients. Although the features of SOAP descriptors
in each dimension do not have actual physical significance, their combined features can provide
rich local structural information for machine learning models, thus improving the predictive
performance of the models. The relevant formulas for the calculation of SOAP are shown in
(1.5)~(1.8):

8
pui =7 mz ch *c”  \* MERGEFORMAT (1.5)
Coim = m Vg, (1Y, (0,)p” (r) \* MERGEFORMAT (1.6)
A & 1/26%r—R,
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K" (p,p)= (%)5 \* MERGEFORMAT (1.8)
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The main parameters used in this study for generating SOAP descriptors by using DScribe
2.1.1 are shown in Table S6.

Table S6. The main parameters employed when generating SOAP descriptors by using DScribe
2.1.1.4

r_cut(A) c n_max 1_max method crossover

5.0 0.2 6 4 Inner False




Text S3. The Henry constant, which is used to describe the adsorption behaviour of a gas at
low pressure on the surface of a material such as a MOF, is an important concept in the field of
gas adsorption. It is derived from Henry's Law, which states that the solubility of a gas in a
solid or liquid at low pressure is proportional to the partial pressure of the gas:

C=K, P \* MERGEFORMAT (1.9)

The Henry constant characterises the adsorption behaviour of a material at lower gas partial
pressures and is a quantitative indicator of the initial adsorption capacity. The magnitude of this
value often implies the strength of water adsorption by the material. The main parameters used
in this study for the calculation of Henry constant for the adsorption of water molecules by
MOF using the Sorption module of Material Studio version 2019 are shown in Table S7.

Table S7. Main parameters employed for Henry constant calculations using the sorption
module of Material Studio 2019.

Task Henry constant Forcefield Universal
Method Metropolis Charges Use current
Production steps 100000 Electrostatic Ewald&Group
Temperature 298(constant) Van der Waals Atom based

Table S8. The relevant parameters of the t-SNE algorithm and the UMAP algorithm used in
this study. T-Distributed Stochastic Neighbor Embedding (t-SNE) is a probabilistic-based
dimensionality reduction algorithm that is typically effective in capturing the local structure of
the data and is therefore well-suited for the detection of details in local neighborhoods. The
algorithm maps high-dimensional data into two- or three-dimensional space, with the objective
of maintaining the similarity between the original data points in a low-dimensional space. It is
typically effective in distinguishing complex data with nonlinear structure. Uniform Manifold
Approximation and Projection (UMAP) is a topology-based dimensionality reduction
algorithm that better preserves the global structure of the data while maintaining the
relationships between local neighbouring points.

'angle": 0.5, 'early _exaggeration': 12.0, 'init': 'pca’, 'learning_rate': 'auto’,
'method": 'barnes_hut', 'metric': 'euclidean’, 'metric_params': None,

t-SNE.  'min_grad norm": le-07, 'n_components": 2, 'n_iter': 1000,
'n_iter_without progress': 300, 'n_jobs': None, 'perplexity': 50, 'rTandom_state":
123, 'verbose': 0

'a": None, 'angular_rp_forest': False, 'b'": None, 'dens_frac': 0.3, 'dens_lambda":

UMAP 2.0, 'dens_var_shift" 0.1, 'densmap': False, 'disconnection_distance': None,
'force_approximation_algorithm': False, 'init": 'spectral', 'learning_rate': 1.0,




'local connectivity": 1.0, 'low_memory': True, 'metric': 'euclidean’,
'metric_kwds'": None, 'min_dist": 0.1, 'n_components': 2, 'n_epochs': None,
'n_jobs": -1, 'n_neighbors': 30, 'negative _sample rate': 5, 'output_dens': False,
'output_metric": 'euclidean’, 'output metric_kwds': None, 'precomputed knn":
(None, None, None), 'random_state': None, 'repulsion_strength': 1.0,

'set_ op_mix ratio": 1.0, 'spread": 1.0, 'target metric'": 'categorical’,
'target_metric_kwds'": None, 'target n_neighbors': -1, 'target weight': 0.5,
'tqdm_kwds": {'desc": 'Epochs completed', 'bar format': '{desc}:
{percentage:3.0f} %] {bar} {n_fmmt}/{total fmt} [{elapsed}]’, 'disable": True},
'transform_mode'": 'embedding', 'transform_queue size": 4.0, 'transform_seed":
42, 'unique': False, 'verbose': False

Figure S2. T-SNE plot and UMAP plot for dimensionality reduction of the original dataset
under 2-class strategy. b) t-SNE plot and UMAP plot for dimensionality reduction of the
original dataset under 3-class strategy.
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Table S9. 2-class models trained using the PyCaret workflow on the dataset after
dimensionality reduction using the RFECV algorithm and their performance (performance is
sorted from high to low, only the top five are shown).

Model Accuracy AUC Recall Prec. F1

Extra Trees

et 0.8571 0.8687 0.9479 0.8661 0.9038
Classifier
Extreme

xghoost  Gradient 0.8522 0.8524 0.9471 0.8595 0.9006
Boosting
CatBoost

catboost 0.8431 0.8781 0.9413 0.8539 0.8944
Classifier

Random Forest

rf 0.8340 0.8555 0.9283 0.8522 0.8876
Classifier
Light Gradient

lightgbm Boosting 0.8108 0.8455 0.8958 0.8469 0.8687
Machine

Table S10. 3-class models trained using the PyCaret workflow on the dataset after
dimensionality reduction using the RFECV algorithm and their performance (performance is
sorted from high to low, only the top five are shown).

Model Accuracy AUC Recall Prec. F1

Random Forest

rf 0.6686 0.8380 0.6686 0.6961 0.6628
Classifier
Gradient

ghc Boosting 0.6502 0.8223 0.6502 0.6657 0.6471
Classifier
Light Gradient

lightgbm Boosting 0.6498 0.8266 0.6498 0.6772 0.6440

Machine



Extra Trees

et 0.6455 0.8312 0.6455 0.6874 0.6412
Classifier
CatBoost

catboost 0.6455 0.8394 0.6455 0.6815 0.6381
Classifier

Table S11. 2-class models trained using the PyCaret workflow on the dataset after
dimensionality reduction using the PCA algorithm and their performance (performance is
sorted from high to low, only the top five are shown).

Model Accuracy AUC Recall Prec. F1
CatBoost

catboost 0.8247 0.8312 0.9871 0.8091 0.8888
Classifier
Extreme

xgboost  Gradient 0.8197 0.8447 0.9275 0.8409 0.8798
Boosting

Random Forest
rf 0.8065 0.7896 0.9871 0.7936 0.8788
Classifier

Extra Trees

et 0.8065 0.8154 0.9812 0.7970 0.8784
Classifier
Light Gradient

lightgbm Boosting 0.8050 0.8440 0.9275 0.8216 0.8694
Machine

Table S12. 3-class models trained using the PyCaret workflow on the dataset after
dimensionality reduction using the PCA algorithm and their performance (performance is
sorted from high to low, only the top five are shown).

Model Accuracy AUC Recall Prec. F1

CatBoost
catboost 0.5942 0.7424 0.5942 0.6151 0.5772
Classifier



Extreme
xgboost  Gradient 0.5935 0.7259 0.5935 0.5964 0.5818

Boosting

Extra Trees

et 0.5617 0.7400 0.5617 0.5796 0.5541
Classifier
Light Gradient

lightgbm Boosting 0.5385 0.7086 0.5385 0.5599 0.5280
Machine

Random Forest
rf 0.5342 0.7170 0.5342 0.5702 0.5239
Classifier

Text S4. Specific formula for the metrics used to assess model performance and their meanings.

Accuracy: The proportion of correctly classified samples among the total samples.

TP+TN
Accuracy = \* MERGEFORMAT (1.10)
TP+TN+ FP+FN

AUC (Area Under the Curve): Represents the area under the ROC curve, showing the model's
ability to distinguish between classes. AUC does not have a simple formula as it is computed
by integrating the ROC curve, which plots the True Positive Rate (TPR) against the False
Positive Rate (FPR) at various threshold levels.

Recall (Sensitivity or True Positive Rate): The ability of the model to identify all positive
samples.

Recall = L \* MERGEFORMAT (1.11)
TP+ FN

Precision: The proportion of true positive predictions among all positive predictions made by
the model.

Precision = L \* MERGEFORMAT (1.12)
TP+ FP

F1 Score: The harmonic mean of Precision and Recall, providing a balance between the two,
especially when there is an uneven class distribution.



F1

_ 2* Precision* Recall

\* MERGEFORMAT (1.13)

Precision + Recall

True Positive (TP): The number of instances where the model correctly predicts the positive

class. This means that a sample that is actually positive is correctly classified as positive.

True Negative (TN): The number of instances where the model correctly predicts the negative

class. This indicates that a sample that is actually negative is correctly classified as negative.

False Positive (FP): The number of instances where the model incorrectly predicts the positive

class. In this case, a sample that is actually negative is mistakenly classified as positive.

False Negative (FN): The number of instances where the model incorrectly predicts the

negative class. Here, a sample that is actually positive is wrongly classified as negative.

Figure S3. ROC curves of a) 2-class ETC model and b) 3-class RF model based on the reduced

dataset using the RFECV algorithm.
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Table S13. The parameter grid used for hyperparametric tuning.

Parameter

Value

n_estimators
max_features
max_depth
min_samples_split
min_samples_leaf
bootstrap

100,300,500,700,800,900, 1200,1300
'log2', 'sqrt', 0.5,0.6, 0.7,0.8

None, 5,10, 15,20

2,5,10, 15,20

1,2,4,6,8,10

True, False

Figure S4. a) ROC curves of the optimal hyperparameter-based 2-class ETC model on the test

set, the ROC curves of all categories show that the model exhibits good performance at different

thresholds. b) Confusion matrix of the optimal hyperparameter-based 2-class ETC model on



the test set, where 88% of the data points are correctly classified.
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Table S14. Optimal hyperparameter combinations for the 2-class ETC model after

hyperparameter tuning.
hyperparameter Value hyperparameter Value
bootstrap FALSE min_samples_leaf 1
ccp_alpha 0 min_samples_split 2
class_weight None min_weight_fraction_leaf 0
criterion gini n_estimators 100
max_depth None n_jobs -1
max_features sqrt oob_score False
max_leaf nodes None random_state 123
max_samples None verbose 0

min_impurity_decreas

0 warm_start False
e




Table S15. Optimal hyperparameter combinations for the 3-class ETC model after

hyperparameter tuning.
hyperparameter Value hyperparameter Value
bootstrap FALSE min_samples_leaf 1
ccp_alpha 0 min_samples_split 2
class_weight None min_weight fraction_leaf 0
criterion gini n_estimators 1200
max_depth 10 n_jobs None
max_features sqrt oob_score False
max_leaf nodes None random_state 0
max_samples None verbose 0
min_impurity_decreas 0 warm_start False

(4

Figure S5. Partial Dependency Plot (PDP) of the 3 most important features selected by the

feature importances parameter of the 3-class ETC model.
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Figure S6. Kernel density estimation plots of MOF water stability for a) D_me-Z-3-all and b)
mc-Z-2-all.

a) KDE of Scaled mc-Z-2-all for Different Stability Categories b) KDE of Scaled D_me-Z-3-all for Different Stability Categories

s 8 %
S
15 ’ 5
6
£10 g
g g4
A A
5
\ 2
o4 : 5 .
0.0 02 04 06 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Scaled mc-Z-2-all Scaled D_me-Z-3-all_scaled

Table S16. Comparison of predicted labels with true labels. The predicted labels are the result

of the prediction using the 3-class ETC model on the validation set.

filename prediction true
BIQHIU 0 1
CAVRAU 0 0
EWESEF 1 2
FUYCAF 1 1
GUCTAB 1 2
HUFKOK 2 2
IXIKOR 1 2
KUMGIK 0 0
KUMGOQ 0 0
LAFFEG 2 2
ONOCOK 0 0
RUYVIS 1 2
SOYWOT 0 2
WUHCUZ 1 1
YEZKIZ 2 2
ADABUE 2 2
AVIPAX 0 0
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Figure S7. Learning curves for training set fraction of 2- and 3-class models. (Random Forest
Classifier based)
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b) Learning Curves for Different Metrics(3-class)
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Figure S8. Boxplots for training set fraction of 2- and 3-class models. (Random Forest
Classifier based)
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Figure S9. The treemap of the metal composition of the MOFs predicted to be water stable,
where different colors represent different Lewis acid classes and the size of the rectangle
represents the proportion of the corresponding category in all stable MOFs.

Intermediate-acid

Zn

Figure S10. Photographs of the samples at different stages: a) as synthesized b) during soaking
and ¢) after drying.
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Table S17. Structural composition of MOFs predicted to be in the stable class and their possible
directions of application or structural properties.

MOF Unit cell Metal Application/Properties Source

homochiral metal—
10.1021/acs.c

2d.5b01359

HUWHOY Cd organic frameworks

(HMOFs)

i
10.1021/acs.
HUVNAP \ﬁ;}?cz’\ Ba/Fe  visible-light irradiation aes.¢

d.5b00925

> R

7 hY

10.1021/ic901

HUWDEJ Ag/Re  harvesting solar energy 749
r
HUWLUL Th ) i 10.1039/C5D
ntrosymmetri
CeTORYTmEte T03363B
10.1021/ja207
IBICON Zn proton conductors

8637




10.1039/C1C

IBUYAH Zn photoluminescent
E05889D
Catalysis
,molecular recognition ~ 10.1021/ic010
ICIZAV Cu . .
,ion exchanging 609¢g
,nhonlinear optics
anisotropic thermal 10.1021/j2401
IFENOY Zn )
expansion 671p
10.1016/j.inoc
IQEKOG Zn Luminescence he.2016.06.03
2
strong optical
absorptions i
: 10.1021/ja064
KESBOA Ag potential for the 5483
synthesis of chiral
MOFs
strong optical
bsorpti
AbSOTPHIONS 10.1021/j2064
KESBUG Ag potential for the 5483
synthesis of chiral
MOFs
10.1080/1553
KESGAS Mn magnetic properties 3174.2012.65
4878
10.1080/0095
KETHEY Cd photoluminescence 8972.2012.74
2890
10.1002/1521
has elastic properties -
LUDTUZ Zn while remaining 3773(200209

crystalline

16)41:18%3C
3392::AID-




ANIE3392%3
E3.0.CO;2-V

10.1002/1521

has elastic properties 3773(200209
LUDVAH Zn while remaining 16)41:18%3C
crystalline 3392::AID-
ANIE3392%3
E3.0.CO;2-V
10.1002/1521
has elastic properties 3773(200209
LUDVEL Zn while remaining 16)41:18%3C
crystalline 3392::AID-
ANIE3392%3
E3.0.CO;2-V
10.1002/1521
has elastic properties 3773(200209
LUDVIP Zn while remaining 16)41:18%3C
crystalline 3392::AID-
ANIE3392%3
E3.0.CO;2-V
10.1002/1521
has elastic properties 3773(200209
LUDVOV Zn while remaining 16)41:18%3C
crystalline 3392::AID-
ANIE3392%3
E3.0.CO;2-V
10.1002/1521
has elastic properties 3773(200209
LUDVUB Zn while remaining 16)41:18%3C
crystalline 3392::AlID-
ANIE3392%3
E3.0.CO;2-V
) 10.4236/0jic.2
LUFBUL Cu catalysis

012.23009




multifunctional
chemosensor/luminesce

10.1039/C7T

MAPLEX E
" nt probe for diethyl C00508C
ether vapor
10.1016/j.mol
MAQMEZ Zn luminescence struc.2017.04.
057
) 10.1021/ja991
MARKOF Cd catalysis
698n
10.1021/ja991
MARLAS Cd catalysis e
698n
MARNUR C . i 10.1016/j.jssc
0 magnetic properties
SNEHE PO 2017.09.023
MARNOL 7 gas storage and 10.1016/j.jssc
n
separation .2017.09.023
10.1002/anie.
MECWIB V4 high th 1 stabili
" gh thermal SO 0503778
10.1002/anie.
MECWOH V4 high th 1 stabilit
n igh thermal stability 200503778
) 10.1002/gjic.2
NETYIV Cu catalysis

00600558




selective sensing

10.1039/C2D

NEYVEU Zn
T30689A
10.1021/acs.i
OMUMEQ Eu ion sensor norgchem.6b0
0190
10.1021/acs.i
OMUMIU Dy Magnetic properties norgchem.6b0
0190
ONAWAC C alvsi 10.1016/j.ica.
catalysi
N s 2011.01.052
10.1016/j.ica.
ONAWEG Cu catalysis Jea
2011.01.052
10.1016/j.ica.
ONAWEGOI Cu catalysis Jea
2011.01.052
10.1080/0095
ONAWEGO02 Cu high thermal stability 8972.2012.72
6713
. . 10.1021/cm20
PAQTIM Ni/Fe catalytic
25747
10.1021/cm20
PAQTOS Ni/Fe catalytic em

25747




10.1039/DT9

PEBNEP Cu/Co catalytic
930000687
PECBOQ Cu/M alvti 10.1016/j.ica.
i
W carayie 2012.01.011
PECMOB Sm/C alvti 10.1524/ncrs.
m/Co catalytic
i 2012.0096
. 10.1021/ic050
PEDMOB Cu catalytic
9377
10.1016/j.mol
VOXQO0Q Zn luminescence struc.2014.12.
077
. 10.1016/j.pol
VOYLUS Ag luminescence

y.2014.11.024

The relevant datasets and codes wused in this study have been uploaded to
https://github.com/coco550/Water-stability/tree/main.
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