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Table S1. Criteria for Water Stability Classifications.1

Category Criteria

Thermodynamically stable stable after long-term exposure to aqueous solutions: week or 
greater in pure water, day(s) in acidic/basic or boiling 
conditions

strong potential for a wide range of applications

High kinetic stability stable after exposure to high humidity conditions: 
decomposes after short exposure times in liquid water
strong potential for industrial applications with high humidity 
conditions

Low kinetic stability stable under low humidity conditions

potential for applications with predried gas conditions

unstable quickly breaks down after any moisture exposure

potential for applications under moisture-free conditions

Table S2. Examples of keywords used in string matching methods for locating water stability 
verification paragraphs.

Keyword relevant description in the original literature

water
as well as in boiling water for 24 h. The PXRD patterns of treated samples 

are well retained

aqueous
maintain its crystallinity and structural integrity after exposure to air for 

3months, or immersion in water and aqueous solutions of pH1 and 12 for 
3days

stable
sample was soaked in water for 5 days; the PXRD patterns demonstrated 

that its framework remained stable

humidity
The results reveal that the structural integrity of TIFSIX-2-Cu-i was 

unaffected by humidity , as was the BET surface area 

H2O Their frameworks remain stable under H2O for 2 months and in particular

exposure
retains high crystallinity and is resistant to water upon exposure to aqueous 

solutions

collapse collapse to nonporous amorphous materials after water vapor isotherm

unstable
loses crystallinity in water within minutes, loses crystallinity in air over 

several hours or days, desolvated sample unstable in air

vapor
Full loss of BET surface area and loss of peaks in PXRD after vapor 

adsorption isotherm in air at 298 K.



moisture
the CO2uptakes were minimally affected by moisture exposure/ found to be 

unstable when exposed to moisture

Table S3. Data distribution of the combined dataset obtained according to the 3-class strategy.

Stable(S) High-stability (HS) Low-stability (LS)

Category tags

Numbers

2

114

1

107

0

90

Figure S1. Data distribution of the combined dataset obtained according to the 3- and 2-class 
strategy. 

Table S4. Data distribution of the combined dataset obtained according to the 2-class strategy.

High-stability (HS) Low-stability (LS)

Category tags

Numbers

1

221

0

90

Text S1. Revised autocorrelation functions (RACs)2 is an improved compact vector descriptor 
based on Autocorrelation functions (ACs), which is stable for different system sizes and 
compositions and does not change with the change of bond lengths and bond orders.RACs are 
based on different attribute values for each different connection depth of a particular molecular 
graph vertex, and the related formulas are shown in (1.1)~(1.4):
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An example of a RAC descriptor: D-mc-Z-3-all is calculated based on the atomic nuclear 
charge number (-Z) property, using metal atoms as the starting atoms (-mc), with a maximum 
bonding depth of 3 (-3), covering all atoms within the entire unit cell (-all), and formulated as 
a "difference" (D-) type descriptor.

Schematic of RACs2

Five heuristic atomic properties are employed in this research：(i) nuclear charge, Z (ii) 
Pauling electronegativity, χ (iii) topology(coordination number), T (iv) identity, I (v) covalent 
atomic radius, S. We apply these properties to the product and difference forms, respectively, 
and take the maximum depth of 3 to compute all RAC descriptors. In the case of linker 
connecting atom centered and functional group centered RACs, an additional atom-wise 
property polarizability (α) was considered.3 A total of 176 RACs were generated, with the 
specific types and numbers shown in Table S5.



Table S5. The different kinds of RACs descriptors used in this study and their number.
type of starting points type and number of descriptors
metal centered 20 products, 20 differences
functional group centered 24 products, 24 differences
full 20 products
full linker 20 products
linker connecting atom centered 24 products, 24 differences

Text S2. Smoothed Overlap of Atomic Positions (SOAP) is a descriptor that encodes 
geometrical regions of atoms by using local expansions of Gaussian-coated atomic densities 
and orthogonal functions based on spherical harmonic functions and radial basis functions. 
SOAP allows for quantification of similarity between atoms without being constrained by 
discretisation or specific coordination coefficients. Although the features of SOAP descriptors 
in each dimension do not have actual physical significance, their combined features can provide 
rich local structural information for machine learning models, thus improving the predictive 
performance of the models. The relevant formulas for the calculation of SOAP are shown in 
(1.5)~(1.8):
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The main parameters used in this study for generating SOAP descriptors by using DScribe 
2.1.1 are shown in Table S6.

Table S6. The main parameters employed when generating SOAP descriptors by using DScribe 
2.1.1.4

r_cut(Å) σ n_max l_max method crossover

5.0 0.2 6 4 inner False



Text S3. The Henry constant, which is used to describe the adsorption behaviour of a gas at 
low pressure on the surface of a material such as a MOF, is an important concept in the field of 
gas adsorption. It is derived from Henry's Law, which states that the solubility of a gas in a 
solid or liquid at low pressure is proportional to the partial pressure of the gas: 

\* MERGEFORMAT (1.9)·HC K P

The Henry constant characterises the adsorption behaviour of a material at lower gas partial 
pressures and is a quantitative indicator of the initial adsorption capacity. The magnitude of this 
value often implies the strength of water adsorption by the material. The main parameters used 
in this study for the calculation of Henry constant for the adsorption of water molecules by 
MOF using the Sorption module of Material Studio version 2019 are shown in Table S7.

Table S7. Main parameters employed for Henry constant calculations using the sorption 
module of Material Studio 2019.

Task Henry constant Forcefield Universal

Method Metropolis Charges Use current

Production steps 100000 Electrostatic Ewald&Group

Temperature 298(constant) Van der Waals Atom based

Table S8. The relevant parameters of the t-SNE algorithm and the UMAP algorithm used in 
this study. T-Distributed Stochastic Neighbor Embedding (t-SNE) is a probabilistic-based 
dimensionality reduction algorithm that is typically effective in capturing the local structure of 
the data and is therefore well-suited for the detection of details in local neighborhoods. The 
algorithm maps high-dimensional data into two- or three-dimensional space, with the objective 
of maintaining the similarity between the original data points in a low-dimensional space. It is 
typically effective in distinguishing complex data with nonlinear structure. Uniform Manifold 
Approximation and Projection (UMAP) is a topology-based dimensionality reduction 
algorithm that better preserves the global structure of the data while maintaining the 
relationships between local neighbouring points.

t-SNE

'angle': 0.5, 'early_exaggeration': 12.0, 'init': 'pca', 'learning_rate': 'auto', 
'method': 'barnes_hut', 'metric': 'euclidean', 'metric_params': None, 
'min_grad_norm': 1e-07, 'n_components': 2, 'n_iter': 1000, 
'n_iter_without_progress': 300, 'n_jobs': None, 'perplexity': 50, 'random_state': 
123, 'verbose': 0

UMAP

'a': None, 'angular_rp_forest': False, 'b': None, 'dens_frac': 0.3, 'dens_lambda': 
2.0, 'dens_var_shift': 0.1, 'densmap': False, 'disconnection_distance': None, 
'force_approximation_algorithm': False, 'init': 'spectral', 'learning_rate': 1.0, 



'local_connectivity': 1.0, 'low_memory': True, 'metric': 'euclidean', 
'metric_kwds': None, 'min_dist': 0.1, 'n_components': 2, 'n_epochs': None, 
'n_jobs': -1, 'n_neighbors': 30, 'negative_sample_rate': 5, 'output_dens': False, 
'output_metric': 'euclidean', 'output_metric_kwds': None, 'precomputed_knn': 
(None, None, None), 'random_state': None, 'repulsion_strength': 1.0, 
'set_op_mix_ratio': 1.0, 'spread': 1.0, 'target_metric': 'categorical', 
'target_metric_kwds': None, 'target_n_neighbors': -1, 'target_weight': 0.5, 
'tqdm_kwds': {'desc': 'Epochs completed', 'bar_format': '{desc}: 
{percentage:3.0f}%| {bar} {n_fmt}/{total_fmt} [{elapsed}]', 'disable': True}, 
'transform_mode': 'embedding', 'transform_queue_size': 4.0, 'transform_seed': 
42, 'unique': False, 'verbose': False

Figure S2. T-SNE plot and UMAP plot for dimensionality reduction of the original dataset 
under 2-class strategy. b) t-SNE plot and UMAP plot for dimensionality reduction of the 
original dataset under 3-class strategy. 



Table S9. 2-class models trained using the PyCaret workflow on the dataset after 
dimensionality reduction using the RFECV algorithm and their performance (performance is 
sorted from high to low, only the top five are shown).

Table S10. 3-class models trained using the PyCaret workflow on the dataset after 
dimensionality reduction using the RFECV algorithm and their performance (performance is 
sorted from high to low, only the top five are shown).

Model Accuracy AUC Recall Prec. F1

et
Extra Trees 

Classifier
0.8571 0.8687 0.9479 0.8661 0.9038

xgboost

Extreme 

Gradient 

Boosting

0.8522 0.8524 0.9471 0.8595 0.9006

catboost
CatBoost 

Classifier
0.8431 0.8781 0.9413 0.8539 0.8944

rf
Random Forest 

Classifier
0.8340 0.8555 0.9283 0.8522 0.8876

lightgbm

Light Gradient 

Boosting 

Machine

0.8108 0.8455 0.8958 0.8469 0.8687

Model Accuracy AUC Recall Prec. F1

rf
Random Forest 

Classifier
0.6686 0.8380 0.6686 0.6961 0.6628

gbc

Gradient 

Boosting 

Classifier

0.6502 0.8223 0.6502 0.6657 0.6471

lightgbm

Light Gradient 

Boosting 

Machine

0.6498 0.8266 0.6498 0.6772 0.6440



Table S11. 2-class models trained using the PyCaret workflow on the dataset after 
dimensionality reduction using the PCA algorithm and their performance (performance is 
sorted from high to low, only the top five are shown).

Table S12. 3-class models trained using the PyCaret workflow on the dataset after 
dimensionality reduction using the PCA algorithm and their performance (performance is 
sorted from high to low, only the top five are shown).

et
Extra Trees 

Classifier
0.6455 0.8312 0.6455 0.6874 0.6412

catboost
CatBoost 

Classifier
0.6455 0.8394 0.6455 0.6815 0.6381

Model Accuracy AUC Recall Prec. F1

catboost
CatBoost 

Classifier
0.8247 0.8312 0.9871 0.8091 0.8888

xgboost

Extreme 

Gradient 

Boosting

0.8197 0.8447 0.9275 0.8409 0.8798

rf
Random Forest 

Classifier
0.8065 0.7896 0.9871 0.7936 0.8788

et
Extra Trees 

Classifier
0.8065 0.8154 0.9812 0.7970 0.8784

lightgbm

Light Gradient 

Boosting 

Machine

0.8050 0.8440 0.9275 0.8216 0.8694

Model Accuracy AUC Recall Prec. F1

catboost
CatBoost 

Classifier
0.5942 0.7424 0.5942 0.6151 0.5772



Text S4. Specific formula for the metrics used to assess model performance and their meanings.

Accuracy: The proportion of correctly classified samples among the total samples.

\* MERGEFORMAT (1.10)ccuracy TP TNA
TP TN FP FN




  

AUC (Area Under the Curve): Represents the area under the ROC curve, showing the model's 
ability to distinguish between classes. AUC does not have a simple formula as it is computed 
by integrating the ROC curve, which plots the True Positive Rate (TPR) against the False 
Positive Rate (FPR) at various threshold levels.

Recall (Sensitivity or True Positive Rate): The ability of the model to identify all positive 
samples.

\* MERGEFORMAT (1.11)
TPRecall

TP FN




Precision: The proportion of true positive predictions among all positive predictions made by 
the model.

\* MERGEFORMAT (1.12)
TPPrecision

TP FP




F1 Score: The harmonic mean of Precision and Recall, providing a balance between the two, 
especially when there is an uneven class distribution.

xgboost

Extreme 

Gradient 

Boosting

0.5935 0.7259 0.5935 0.5964 0.5818

et
Extra Trees 

Classifier
0.5617 0.7400 0.5617 0.5796 0.5541

lightgbm

Light Gradient 

Boosting 

Machine

0.5385 0.7086 0.5385 0.5599 0.5280

rf
Random Forest 

Classifier
0.5342 0.7170 0.5342 0.5702 0.5239



\* MERGEFORMAT (1.13)
2* *1 Precision RecallF
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



True Positive (TP): The number of instances where the model correctly predicts the positive 
class. This means that a sample that is actually positive is correctly classified as positive.
True Negative (TN): The number of instances where the model correctly predicts the negative 
class. This indicates that a sample that is actually negative is correctly classified as negative.
False Positive (FP): The number of instances where the model incorrectly predicts the positive 
class. In this case, a sample that is actually negative is mistakenly classified as positive. 
False Negative (FN): The number of instances where the model incorrectly predicts the 
negative class. Here, a sample that is actually positive is wrongly classified as negative. 

Figure S3. ROC curves of a) 2-class ETC model and b) 3-class RF model based on the reduced 
dataset using the RFECV algorithm. 

Table S13. The parameter grid used for hyperparametric tuning.
Parameter Value
n_estimators 100,300,500,700,800,900, 1200,1300
max_features 'log2', 'sqrt', 0.5,0.6, 0.7,0.8
max_depth None, 5,10, 15,20
min_samples_split 2, 5, 10, 15, 20
min_samples_leaf 1, 2, 4, 6, 8, 10
bootstrap True, False

Figure S4. a) ROC curves of the optimal hyperparameter-based 2-class ETC model on the test 
set, the ROC curves of all categories show that the model exhibits good performance at different 
thresholds. b) Confusion matrix of the optimal hyperparameter-based 2-class ETC model on 



the test set, where 88% of the data points are correctly classified.

Table S14. Optimal hyperparameter combinations for the 2-class ETC model after 

hyperparameter tuning.

hyperparameter Value hyperparameter Value

bootstrap FALSE min_samples_leaf 1

ccp_alpha 0 min_samples_split 2

class_weight None min_weight_fraction_leaf 0

criterion gini n_estimators 100

max_depth None n_jobs -1

max_features sqrt oob_score False

max_leaf_nodes None random_state 123

max_samples None verbose 0

min_impurity_decreas
e

0 warm_start False



Table S15. Optimal hyperparameter combinations for the 3-class ETC model after 

hyperparameter tuning.

hyperparameter Value hyperparameter Value

bootstrap FALSE min_samples_leaf 1

ccp_alpha 0 min_samples_split 2

class_weight None min_weight_fraction_leaf 0

criterion gini n_estimators 1200

max_depth 10 n_jobs None

max_features sqrt oob_score False

max_leaf_nodes None random_state 0

max_samples None verbose 0

min_impurity_decreas
e

0 warm_start False

Figure S5. Partial Dependency Plot (PDP) of the 3 most important features selected by the 
feature_importances_ parameter of the 3-class ETC model.



Figure S6. Kernel density estimation plots of MOF water stability for a) D_mc-Z-3-all and b) 
mc-Z-2-all.

Table S16. Comparison of predicted labels with true labels. The predicted labels are the result 

of the prediction using the 3-class ETC model on the validation set.

filename prediction true

BIQHIU 0 1

CAVRAU 0 0

EWESEF 1 2

FUYCAF 1 1

GUCTAB 1 2
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Figure S7. Learning curves for training set fraction of 2- and 3-class models. (Random Forest 
Classifier based)

Figure S8. Boxplots for training set fraction of 2- and 3-class models. (Random Forest 
Classifier based)

YUQMOO 2 2



Figure S9. The treemap of the metal composition of the MOFs predicted to be water stable, 
where different colors represent different Lewis acid classes and the size of the rectangle 
represents the proportion of the corresponding category in all stable MOFs.

Figure S10. Photographs of the samples at different stages: a) as synthesized b) during soaking 
and c) after drying.



    

Table S17. Structural composition of MOFs predicted to be in the stable class and their possible 
directions of application or structural properties.

MOF Unit cell Metal Application/Properties Source

HUWHOY Cd
homochiral metal–
organic frameworks 

(HMOFs)

10.1021/acs.c
gd.5b01359

HUVNAP Ba/Fe visible-light irradiation
10.1021/acs.c
gd.5b00925

HUWDEJ Ag/Re harvesting solar energy
10.1021/ic901

749r

HUWLUI Th centrosymmetric
10.1039/C5D

T03363B

IBICON Zn proton conductors
10.1021/ja207

8637



IBUYAH Zn photoluminescent
10.1039/C1C

E05889D

ICIZAV Cu

Catalysis
,molecular recognition

,ion exchanging
,nonlinear optics

10.1021/ic010
609g

IFENOY Zn
anisotropic thermal 

expansion
10.1021/ja401

671p

IQEKOG Zn Luminescence
10.1016/j.inoc
he.2016.06.03

2

KESBOA Ag

strong optical 
absorptions

potential for the 
synthesis of chiral 

MOFs

10.1021/ja064
5483

KESBUG Ag

strong optical 
absorptions

potential for the 
synthesis of chiral 

MOFs

10.1021/ja064
5483

KESGAS Mn magnetic properties
10.1080/1553
3174.2012.65

4878

KETHEY Cd photoluminescence
10.1080/0095
8972.2012.74

2890

LUDTUZ Zn
has elastic properties 

while remaining 
crystalline

10.1002/1521
-

3773(200209
16)41:18%3C
3392::AID-



ANIE3392%3
E3.0.CO;2-V

LUDVAH Zn
has elastic properties 

while remaining 
crystalline

10.1002/1521
-

3773(200209
16)41:18%3C
3392::AID-

ANIE3392%3
E3.0.CO;2-V

LUDVEL Zn
has elastic properties 

while remaining 
crystalline

10.1002/1521
-

3773(200209
16)41:18%3C
3392::AID-

ANIE3392%3
E3.0.CO;2-V

LUDVIP Zn
has elastic properties 

while remaining 
crystalline

10.1002/1521
-

3773(200209
16)41:18%3C
3392::AID-

ANIE3392%3
E3.0.CO;2-V

LUDVOV Zn
has elastic properties 

while remaining 
crystalline

10.1002/1521
-

3773(200209
16)41:18%3C
3392::AID-

ANIE3392%3
E3.0.CO;2-V

LUDVUB Zn
has elastic properties 

while remaining 
crystalline

10.1002/1521
-

3773(200209
16)41:18%3C
3392::AID-

ANIE3392%3
E3.0.CO;2-V

LUFBUL Cu catalysis
10.4236/ojic.2

012.23009



MAPLEX Eu

multifunctional 
chemosensor/luminesce

nt probe for diethyl 
ether vapor

10.1039/C7T
C00508C

MAQMEZ Zn luminescence
10.1016/j.mol
struc.2017.04.

057

MARKOF Cd catalysis
10.1021/ja991

698n

MARLAS Cd catalysis
10.1021/ja991

698n

MARNUR Co magnetic properties
10.1016/j.jssc
.2017.09.023

MARNOL
Zn

gas storage and 
separation

10.1016/j.jssc
.2017.09.023

MECWIB Zn high thermal stability
10.1002/anie.
200503778

MECWOH Zn high thermal stability
10.1002/anie.
200503778

NETYIV Cu catalysis
10.1002/ejic.2

00600558



NEYVEU Zn
selective sensing 10.1039/C2D

T30689A

OMUMEQ Eu ion sensor
10.1021/acs.i
norgchem.6b0

0190

OMUMIU Dy Magnetic properties
10.1021/acs.i
norgchem.6b0

0190

ONAWAC Cu catalysis
10.1016/j.ica.
2011.01.052

ONAWEG Cu catalysis
10.1016/j.ica.
2011.01.052

ONAWEG01 Cu catalysis
10.1016/j.ica.
2011.01.052

ONAWEG02 Cu high thermal stability
10.1080/0095
8972.2012.72

6713

PAQTIM Ni/Fe catalytic
10.1021/cm20

25747

PAQTOS Ni/Fe catalytic
10.1021/cm20

25747



PEBNEP Cu/Co catalytic
10.1039/DT9
930000687

PECBOQ Cu/Mo catalytic
10.1016/j.ica.
2012.01.011

PECMOB Sm/Co catalytic
10.1524/ncrs.

2012.0096

PEDMOB Cu catalytic
10.1021/ic050

9377

VOXQOQ Zn luminescence
10.1016/j.mol
struc.2014.12.

077

VOYLUS Ag luminescence
10.1016/j.pol
y.2014.11.024

The relevant datasets and codes used in this study have been uploaded to 
https://github.com/coco550/Water-stability/tree/main.
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