Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supplementary Material

Regulating d-band electrons of sulfur-enriched CoS_x to weakening the S-Hads bond in $CoS_x/ZnCdS$ Ohmic heterojunctions for enhanced photocatalytic hydrogen evolution

Jiaqi Yang^{a, b, c}, Yuanjin He^{a, b, c}, Yuqiang Hao^{a, b, c}, Xuqiang Hao^{a, b, c, *}, and Zhiliang Jin^{a, b, c}

^a School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R.China

^b Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021,

P.R.China

^c Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R.China

Corresponding author *E-mail address*: haoxuqiang@126.com (X. Q. Hao)

1. Characterizations

The crystal structure was analyzed by X-ray diffraction (XRD) using a Rigaku Ultima III Xray diffractometer set at 40 kV and 30 mA. The morphology and microstructure of the catalysts were examined through field emission scanning electron microscopy (SEM: JSM-6701F, JEOL, 50 kV), and low-resolution and high-resolution transmission electron microscopy (TEM and HRTEM) images were captured using a JEM-2100 electron microscope operating at 200 kV. X-ray photoelectron spectroscopy (XPS: ESCALAB Xi⁺) was employed to determine the elemental composition and valence states of the samples. The zeta potential of the catalyst was measured in pure water using a Litesizer 500. The UV-vis diffuse reflectance spectra (DRS), calibrated with BaSO₄ powder, and the UV-vis absorption spectra of all catalysts were recorded using a PerkinElmer Lambda-750 UV-vis-NIR spectrometer. The fluorescence (PL) spectra and timeresolved fluorescence emission spectra of the samples were obtained using a FLUORO-MAX-4 spectrophotometer and a Horiba Jobin Yvon Data Station HUB, respectively.

2. Photocatalytic hydrogen evolution

The photocatalytic hydrogen evolution reaction is carried out using a 64 mL quartz glass bottle in a nine-channel photocatalytic reaction system (Perfect Light-PCX50B Discover). A 5W LED lamp is used as the light source. A dispersion of 6 mg of catalyst in 30 mL of a 10 vol% lactic acid aqueous solution is prepared. Exhaust the air from the glass bottle with N₂. For each measurement, 0.5 mL of gas is extracted and the hydrogen production is analyzed using a GC7900 gas chromatograph (TCD, 13X column).

3. Electrochemical measurement

To perform photoelectrochemical measurements on an electrochemical workstation (Versatat4-400, Advanced Measurement Technology) using a three-electrode cell with a working electrode, Pt serves as the counter electrode and a saturated calomel electrode (SCE) as the reference electrode. Using $0.2M \text{ Na}_2\text{SO}_4$ solution as electrolyte. Using a 300W Xe lamp with a 420nm optical cutoff filter as the light source, transient photocurrent measurements were recorded under visible light illumination under open circuit potential. Measure linear sweep voltammetry (LSV) at a scanning rate of 5mV s⁻¹ at room temperature. Electrochemical impedance spectroscopy (EIS) is collected at an open circuit potential with a modulation amplitude of 5mV in the frequency range of 1.0MHz to 0.1Hz. Mott Schottky measurements were conducted in the dark, with a bias voltage range of -1.0 V to 1.0 V (relative to SCE) and a frequency of 1000 Hz, and cyclic voltammetry (CV) was determined at a scan rate of 50, 70, 100, 150, 200 mV s⁻¹.

4. DFT calculation

Using first principles, density functional theory (DFT) calculations were performed in the generalized gradient approximation (GGA) using the Perdew Burke Ernzerhof (PBE) formula. In reciprocal space, a 2x5x1 Monkhorst-Pack grid was used along with a smearing parameter of 0.1 eV to calculate electronic structure. The convergence criteria for self-consistent field (SCF) force, and displacement were1.0x10-6 Ha, 3.0 x 10-2 eV/Å, and 1.0 x 10-3 Å respectively. Atomic relaxation was allowed to obtain more accurate results. Ultrasoft pseudopotentials were utilized in this study with a cut-off energy of 500.00 eV.

Figure S1. Comparison of photocatalytic hydrogen evolution activity based on ZnCdS and CoS materials.

		Hydrogen		
Photocatalysts	Sacrificial reagent	Lamp source	production (mmol g ⁻¹	References
			h -1)	
ZnCdS/CoS _x	10% vol lactic acid	Visible light irradiation	28.40	This work
ZnCdS/Ni ₃ C	0.25M Na ₂ S/0.25M	300 W Xenon	15.66	[1]
	Na ₂ SO ₃	lamp		
$SnS_2/Zn_{0.2}Cd_{0.8}S$	10vol% TEOA	300 W Xenon lamp	12.17	[2]
ZnCdS/NiCo ₂ S ₄	0.25M Na ₂ S/0.35M	300 W Xenon	4.67	[3]
ZnCdS/MoS ₂	Na ₂ SO ₃ 0.25M Na ₂ S/0.35M Na ₂ SO ₃	cel-sph2n		
		automatic online	7.76	[4]
Zn _{0.5} Cd _{0.5} S/PdAg/g- C ₃ N ₄	10vol% TEOA	300 W Xenon lamp	6.25	[5]
ZnCdS/Cu ₃ P	0.35M Na ₂ S/0.25M Na ₂ SO ₃	300 W Xenon lamp	2.70	[6]
CuS/ZnCdS	0.35M Na ₂ S/0.25M Na ₂ SO ₃	300 W Xenon lamp	7.58	[7]
ZnCdS (QDs) /PZH	10% vol lactic acid	300 W Xenon lamp	11.32	[8]
Zn _x Cd _{1-x} S/Zn _x Cd _{1-x} - MOF	lactic acid and phosphate buffer	300 W Xenon lamp	13.30	[9]
CoS _x /TiO ₂	15% vol methanol	300 W Xenon lamp	0.51	[10]
CoS/Nb ₂ O ₅	10vol% TEOA	300 W Xenon lamp	3.55	[11]
$CoS_{1.097}/ZnIn_2S_4$	10vol% TEOA	300 W Xenon lamp	2.63	[12]

Table S1 Comparison of photocatalytic hydrogen production experiments based on ZnCdS and CoS materials.

Figure S2. Mott Schottky curve under illumination conditions of (a) ZnCdS/CoS_x-20, (b) ZnCdS.

Figure S3. (a) CV curves of (a) ZnCdS and (b) CoS_x at various scan voltage.

Figure S4. The PDOS of ZnCdS/CoS_x heterojunction.

Figure S5. AQE at 420, 450, 475, 500 and 520nm for ZnCdS/CoSx-20.

Figure S6. FT-IR and X-ray photoelectron spectroscopy of the catalyst after cycling.

References

- [1] Shen, R., Ding, Y., Li, S., Zhang, P., Xiang, Q., Ng, Y. H., Li, X. (2021). Constructing low-cost Ni₃C/twin-crystal Zn_{0.5}Cd_{0.5}S heterojunction/homojunction nanohybrids for efficient photocatalytic H₂ evolution. Chin. J. Catal., 42(1), 25-36.
- [2] Zhang, X., Yuan, H., Bao, J., Xiao, W., He, G. (2023). Interfacial construction of SnS₂/Zn₀.
 ²Cd_{0.8}S nanopolyhedron heterojunctions for enhanced photocatalytic hydrogen evolution. J.
 Colloid Interface Sci., 651, 254-263.

- [3] Zhao, S., Xu, J., Mao, M., Li, L., Li, X. (2020). NiCo₂S₄@ Zn_{0.5}Cd_{0.5}S with direct Z-scheme heterojunction constructed by band structure adjustment of Zn_xCd_{1-x}S for efficient photocatalytic H₂ evolution. Appl. Surf. Sci., 528, 147016.
- [4] Zhang, Y., Lu, D., Li, H., Kondamareddy, K. K., Wang, H., Zhang, B., Wang, J., Wu, Q., Zeng, Y., Zhang, X., Zhou, M., D, N., Hao, H., Pei, H., Fan, H. (2022). Enhanced visible Light-Driven photocatalytic hydrogen evolution and stability for noble Metal-Free MoS₂/Zn_{0.5}Cd_{0.5}S heterostructures with W/Z phase junctions. Appl. Surf. Sci., 586, 152770.
- [5] Lou, Y., Fei, T., Zhang, Y., Dong, G., Deng, Q., Zhou, Y., Mao, C. (2022). Construction of 1D/0D/2D Zn_{0.5}Cd_{0.5}S/PdAg/g-C₃N₄ ternary heterojunction composites for efficient photocatalytic hydrogen evolution. Int. J. Hydrogen Energy, 47(5), 2936-2946.
- [6] Ge, G., Yuan, S., Liu, Q., Yang, D., Shi, J., Lan, X., Xiao, K. (2022). Insight into the function of noble-metal free Cu₃P decorated Zn_{0.5}Cd_{0.5}S for enhanced photocatalytic hydrogen evolution under visible light irradiation--mechanism for continuous increasing activity. Appl. Surf. Sci., 597, 153660.
- [7] Du, X., Hu, J., Sun, Q., Fu, H., Zhang, J., Chang, J., Liao, Y. (2024). Rapid microwave preparation of CuS/ZnCdS Z-scheme heterojunction for efficient photocatalytic hydrogen evolution. Int. J. Hydrogen Energy, 51, 936-945.
- [8] Fan, W., Chang, H., Zhong, J., Lu, J., Ma, G., Zhang, H., Yin, G. (2024). Facile synthesis of ZnCdS quantum dots via a novel photoetching MOF strategy for boosting photocatalytic hydrogen evolution. Sep. Purif. Technol., 330, 125258.
- [9] Ma, S., Wang, X., Wan, K., Liu, B., Yang, Y., Wang, S. (2025). Metal-organic frameworkderived Zn_xCd_{1-x}S/Zn_xCd_{1-x}-MOF heterostructures promoting charge separation for photocatalytic hydrogen evolution. Sep. Purif. Technol., 354, 129089.
- [10] Zhang, R., Gong, K., Cao, S., Du, F. (2022). Amorphous sulfur-rich CoS_x nanodots as highly efficient cocatalyst to promote photocatalytic hydrogen evolution over TiO₂. Int. J. Hydrogen Energy, 47(94), 39875-39885.
- [11] Ren, X., Shi, J., Duan, R., Di, J., Xue, C., Luo, X., Liu, Q., Xia M., Lin B., Tang, W. (2022). Construction of high-efficiency CoS@ Nb₂O₅ heterojunctions accelerating charge transfer for boosting photocatalytic hydrogen evolution. Chinese Chem. Lett., 33(10), 4700-4704.

[12] Feng, X., Shang, H., Zhou, J., Ma, X., Gao, X., Wang, D., Zhang, B., Zhao, Y. (2023).
 Heterostructured core-shell CoS_{1.097}@ ZnIn₂S₄ nanosheets for enhanced photocatalytic hydrogen evolution under visible light. Chem. Eng. J., 457, 141192.