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1. Characterizations

The crystal structure was analyzed by X-ray diffraction (XRD) using a Rigaku Ultima III X-

ray diffractometer set at 40 kV and 30 mA. The morphology and microstructure of the catalysts 

were examined through field emission scanning electron microscopy (SEM: JSM-6701F, JEOL, 50 

kV), and low-resolution and high-resolution transmission electron microscopy (TEM and HRTEM) 

images were captured using a JEM-2100 electron microscope operating at 200 kV. X-ray 

photoelectron spectroscopy (XPS: ESCALAB Xi+) was employed to determine the elemental 

composition and valence states of the samples. The zeta potential of the catalyst was measured in 

pure water using a Litesizer 500. The UV-vis diffuse reflectance spectra (DRS), calibrated with 

BaSO4 powder, and the UV-vis absorption spectra of all catalysts were recorded using a 

PerkinElmer Lambda-750 UV-vis-NIR spectrometer. The fluorescence (PL) spectra and time-

resolved fluorescence emission spectra of the samples were obtained using a FLUORO-MAX-4 

spectrophotometer and a Horiba Jobin Yvon Data Station HUB, respectively.
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2. Photocatalytic hydrogen evolution

The photocatalytic hydrogen evolution reaction is carried out using a 64 mL quartz glass bottle 

in a nine-channel photocatalytic reaction system (Perfect Light-PCX50B Discover). A 5W LED 

lamp is used as the light source. A dispersion of 6 mg of catalyst in 30 mL of a 10 vol% lactic acid 

aqueous solution is prepared. Exhaust the air from the glass bottle with N2. For each measurement, 

0.5 mL of gas is extracted and the hydrogen production is analyzed using a GC7900 gas 

chromatograph (TCD, 13X column).

3. Electrochemical measurement

To perform photoelectrochemical measurements on an electrochemical workstation 

(Versatat4-400, Advanced Measurement Technology) using a three-electrode cell with a working 

electrode, Pt serves as the counter electrode and a saturated calomel electrode (SCE) as the reference 

electrode. Using 0.2M Na2SO4 solution as electrolyte. Using a 300W Xe lamp with a 420nm optical 

cutoff filter as the light source, transient photocurrent measurements were recorded under visible 

light illumination under open circuit potential. Measure linear sweep voltammetry (LSV) at a 

scanning rate of 5mV s-1 at room temperature. Electrochemical impedance spectroscopy (EIS) is 

collected at an open circuit potential with a modulation amplitude of 5mV in the frequency range 

of 1.0MHz to 0.1Hz. Mott Schottky measurements were conducted in the dark, with a bias voltage 

range of -1.0 V to 1.0 V (relative to SCE) and a frequency of 1000 Hz，and cyclic voltammetry 

(CV) was determined at a scan rate of 50，70，100，150，200 mV s-1.

4. DFT calculation

Using first principles, density functional theory (DFT) calculations were performed in the 

generalized gradient approximation (GGA) using the Perdew Burke Ernzerhof (PBE) formula. In 

reciprocal space, a 2x5x1 Monkhorst-Pack grid was used along with a smearing parameter of 0.1 

eV to calculate electronic structure. The convergence criteria for self-consistent field (SCF) force, 

and displacement were1.0x10-6 Ha, 3.0 x 10-2 eV/Å, and 1.0 x 10-3 Å respectively. Atomic 

relaxation was allowed to obtain more accurate results. Ultrasoft pseudopotentials were utilized in 

this study with a cut-off energy of 500.00 eV.
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Figure S1. Comparison of photocatalytic hydrogen evolution activity based on ZnCdS and CoS materials.



Table S1 Comparison of photocatalytic hydrogen production experiments based on ZnCdS and CoS materials.

Photocatalysts Sacrificial reagent Lamp source

Hydrogen 

production (mmol g-1 

h-1)

References

ZnCdS/CoSx 10% vol lactic acid
Visible light 

irradiation
28.40 This work

ZnCdS/Ni3C
0.25M Na2S/0.25M 

Na2SO3

300 W Xenon 

lamp
15.66 [1]

SnS2/Zn0.2Cd0.8S 10vol% TEOA
300 W Xenon 

lamp
12.17 [2]

ZnCdS/NiCo2S4

0.25M Na2S/0.35M 

Na2SO3

300 W Xenon 

lamp
4.67 [3]

ZnCdS/MoS2

0.25M Na2S/0.35M 

Na2SO3

CEL-SPH2N 

automatic online 

catalytic system

7.76 [4]

Zn0.5Cd0.5S/PdAg/g-

C3N4

10vol% TEOA 300 W Xenon lamp 6.25 [5]

ZnCdS/Cu3P
0.35M Na2S/0.25M 

Na2SO3

300 W Xenon lamp 2.70 [6]

CuS/ZnCdS
0.35M Na2S/0.25M 

Na2SO3

300 W Xenon lamp 7.58 [7]

ZnCdS （QDs）

/PZH
10% vol lactic acid 300 W Xenon lamp 11.32 [8]

ZnxCd1-xS/ZnxCd1-x-

MOF

lactic acid and 

phosphate buffer
300 W Xenon lamp 13.30 [9]

CoSx/TiO2 15% vol methanol 300 W Xenon lamp 0.51 [10]

CoS/Nb2O5 10vol% TEOA 300 W Xenon lamp 3.55 [11]

CoS1.097/ZnIn2S4 10vol% TEOA 300 W Xenon lamp 2.63 [12]



Figure S2. Mott Schottky curve under illumination conditions of (a) ZnCdS/CoSx-20, (b) ZnCdS.

Figure S3. (a) CV curves of (a) ZnCdS and (b) CoSx at various scan voltage.

  
Figure S4. The PDOS of ZnCdS/CoSx heterojunction.
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Figure S5. AQE at 420, 450, 475, 500 and 520nm for ZnCdS/CoSx-20.
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Figure S6. FT-IR and X-ray photoelectron spectroscopy of the catalyst after cycling.
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