Experimental Section

Electrolyte Synthesis: PbSnF₄ was synthesized by the following steps: The following reagents were the starting compounds for synthesis: high-purity Pb (NO₃)₂ (99.99%, Aladdin); analytically pure NH₄F (99.99%, Aladdin), SnF₂ (99.99%, Aladdin), LiF (99.99%, Aladdin). Firstly, a solution of Pb (NO₃)₂ in distilled water was gradually added a threefold excess of a NH₄F solution, the product is obtained through precipitation. Afterward, washing the resulting precipitate several times with distilled water, then dried at 353 K for about 5 h and calcined the γ -PbF₂ at 753-773 K with a heating rate of 5°C min⁻¹. "As a result, β -PbF₂ was obtained as a precursor. Subsequently, PbF₂ and LiF were thoroughly ground, mixed in a 1:3 molar ratio, and pressed into pellets. The resulting pressed mixtures were heated to 873 K with a heating rate of 5°C min⁻¹ to obtain the final sintered PbSnF₄ in quartz tubes in a high-purity argon atmosphere and held at this temperature for 5 h with subsequent cooling to room temperature with switched-off furnace. In the third stage, the obtained solid solutions were fused with equimolar amounts of SnF₂ in crucibles in an argon atmosphere, held at 773 K with a heating rate of 5 °C min⁻¹ for 20 min and cooled to room temperature with switched-off furnace. After all the steps, the obtained were nonstoichiometric PbSnF₄@LiF phases. At last, stoichiometric amounts of the materials were mixed in the agate mortar, and then milled using WC balls (5 mm diameter) and WC jars (45 ml) on a planetary mill; the milling was conducted at 500 rpm for 8 h in Ar atmosphere, and the ball-to-powder ratio was 20:1. It was important that all steps should be completed under argon protection.

Composite Electrode Material Preparation: because of the reason that CuF_2 has a poor F⁻ ionic conductivity and electron conductivity, engineering of an additional ionic and electronic were required in order to prepared the composite cathode of CuF_2 -PbSnF₄@LiF-C (abbreviated as CPC). From this point of views, the conductive carbon and the solid electrolyte PbSnF₄@LiF were mixed into cathode in order to increase the ionic and electronic conductors in CPC cathode. A typical high-energy ball milling procedure (with a rotating speed of 600 rpm for 5 h) was implemented for the mixture of commercial anhydrous CuF_2 (99.99%, Aladdin), as-prepared PbSnF₄@LiF and Super P with a mass ratio of 3:6:1.

In view of the poor F^- ionic conductivity and less reactive interfaces of pure metal anodes, the additional ionic wiring engineering was required to prepare the composite anode of Pb+PbF₂- PbSnF₄@LiF -C (abbreviated as PPC). This composite anode was prepared by mixing Sn (99.9%, Aladdin), SnF2, KSn2F5, and Super P with a mass ratio of 2.5:2.5:4:1 using the typical high-energy ball milling procedure (with a rotating speed of 600 rpm for 5 h).

Ionic and Electronic Conduction Estimation of $PbSnF_4@LiF$: putting 120mg PbSnF₄@LiF inside the metal mold, then pressed it into a pellet with a diameter of 10mm under the pressure of 200 MPa for 2 minutes. Then the construction of ionic blocking layer was executed via blading conductive gold paste on both sides of the pellet, followed by drying at 80 °C for 2 h. Note that, the drying step should be completed under argon protection. Subsequently, Au | PbSnF₄@LiF | Au was assembled into a button cell in order to measure impedance performance though an electrochemical workstation with a frequency range from 10 MHz to 100 Hz and an excitation voltage of 100 mV. Ionic conductivity can be estimated by equation (3):

$$\sigma = \frac{L}{RS} \tag{3}$$

where L, S, and R denote the thickness, area, and resistance of the pellet, respectively.

Preparation of Electrodes: The cathode was prepared by mixing CPC powder, binder poly (vinyl difluoride) (PVDF, Sigma-Aldrich, dissolved in 1-methyl-2pyrrolidinone, Sinopharm Chemical Reagent Co., Ltd, \geq 99.0%, with a mass concentration of 1 mg per 20 µL) and conductive carbon (Super P, MTI Corporation) with a weight ratio of 7:1:2. The slurry anode was prepared by mixing PPC powder, PVDF, and conductive carbon with a weight ratio of 7:1:2. Then both the cathode and anode slurries were pasted on the pure Al and Cu foils, and then dried at the temperature of 60 °C for 12 h in vacuum.

Fabrication and Operation of ASSFIBs: for the better integration of solid -solid interfaces, the THF solution with 1 m TBAF(Aladdin) was used as the interface wetting regent because the reason that its relative stability and ideal F⁻ conductivity. In the progress during battery assembling, the both sides of the pressured pellet would be dropped about 3 μ L TBAF/THF solution to get wet. Then the anode and cathode membranes (both Φ 10) were appressed to each side of the electrolyte pellet surface. LSV test was based on the full cells using above technique. The measurement of electrochemical window of the PbSnF₄@LiF electrolyte would be test in architecture of Pb+PbF₂|PbSnF₄@LiF|PbSnF₄@LiF-C cell was also conducted on this electrochemical workstation at a scan rate of 1.0 mV s⁻¹. The as-assembled Pb+PbF₂ | PbSnF₄@LiF | CuF₂ cell was placed into an oven at 80 °C for 5 h with the follow-up galvanostatic discharge–charge cycling performance measurement on the Land multichannel battery testing system (CT2001A) at the same temperature. The galvanostatic discharge–charge tests were carried out at a current density of 60 mA g⁻¹ with a discharge cut-off voltage of -0.4 V (versus Pb/PbF₂) and a charge cut-off specific capacity of 300 mAh g⁻¹.

Characterization of Materials: The crystal structure and phase purity of the synthesized materials were studied by powder X-ray diffraction (XRD) using Cu K α 1 radiation in a 20 range from 10° to 80° at a scanning rate of 10° min⁻¹ to detect the evolution of chemical composition, elemental valence, and bonding situation of the material at different post-reaction states. The samples were sealed using parafilm during measurement to prevent air exposure. The SEM observation was conducted using a SEM (Nova NanoSEM450) scanning electron microscope operated at 3 kV. And the nanostructure of the solid electrolyte interphase (SEI) was examined using transmission electron microscopy (TEM). Note that, for all the ex-situ characterizations, the post-reaction samples were drawn out from the disassembled batteries and then sealed in a bottle in the Ar-filled glove box before the transfer to the corresponding testing chamber.

Supporting figures:

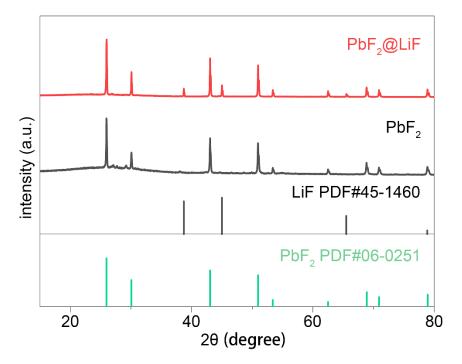


Figure S1. XRD patterns of PbF_2 and $PbF_2@LiF$.

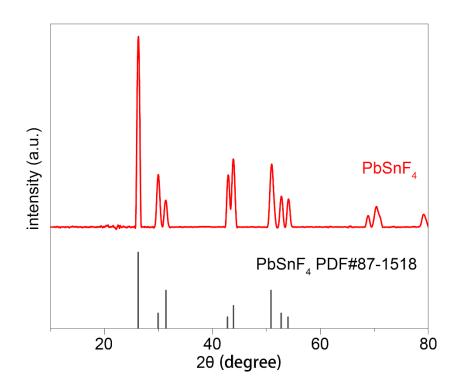
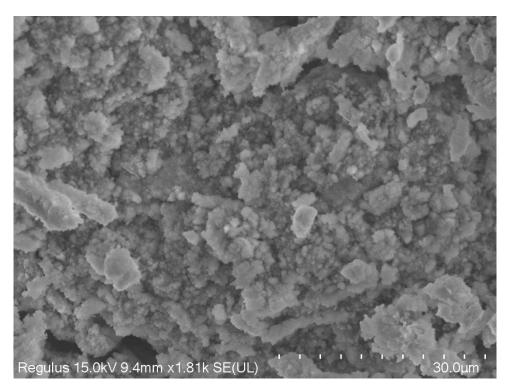
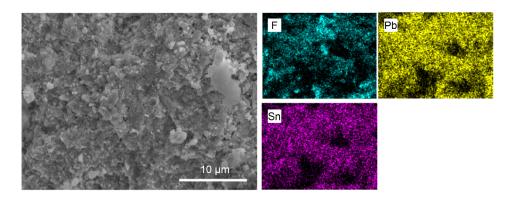




Figure S2. XRD pattern of synthetic PbSnF₄.

Figure S3. SEM image of the morphology of PbSnF₄ powders.

Figure S4. SEM image and the corresponding EDS mapping results of the $PbSnF_4$ powders.

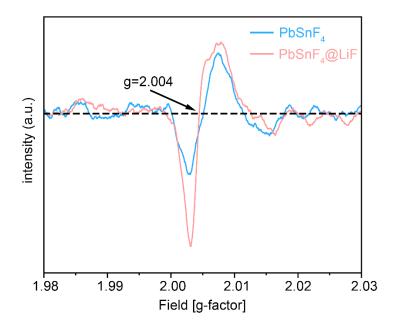
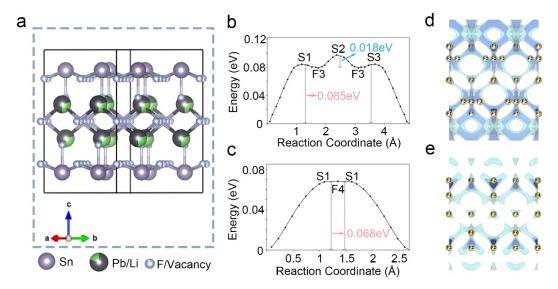
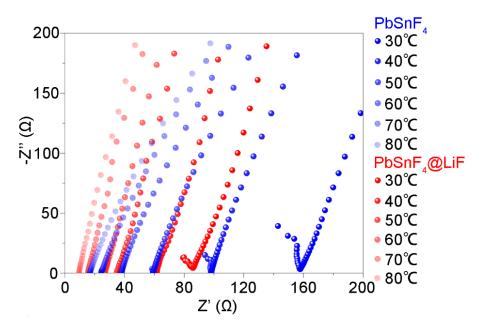




Figure S5. EPR testing of fluorine vacancies in PbSnF₄ and PbSnF₄@LiF.

Figure S6. (a) The crystal structure of $PbSnF_4@LiF$ unit cell was visualized using VESTA. (b) The migration barrier energy of F-ions through different sites in $PbSnF_4@LiF$ and $PbSnF_4$. (d and e) Schematic diagram of fluoride ion transport pathways in $PbSnF_4@LiF$ and $PbSnF_4$.

Figure S7. Nyquist plots of $PbSnF_4$ and $PbSnF_4@LiF$ at different temperatures (30-80 °C).

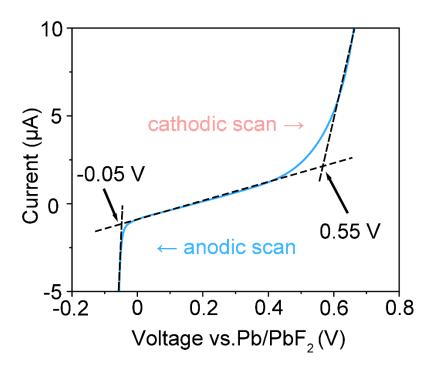


Figure S8. LSV curves of the $CuF_2|PbSnF_4|Pb+PbF_2$ full cell at 0.02 mV s⁻¹.

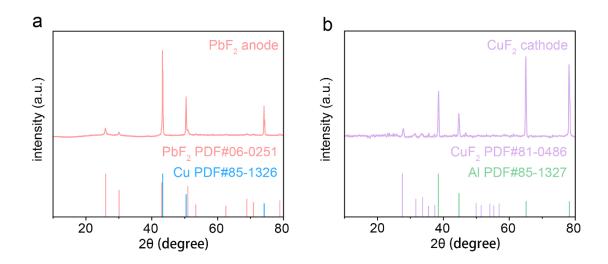
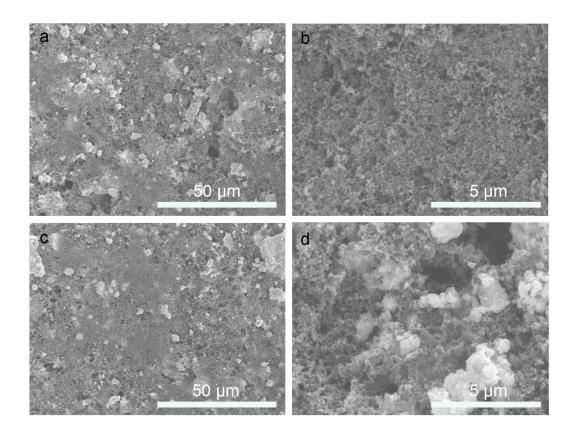



Figure S9. XRD patterns of the synthesized (a) PbF_2 anode and (b) CuF_2 cathode materials.

Figure S10. SEM images of the synthesized PbF₂ anode (a and b) before cycling and (c and d) after 10 cycles.

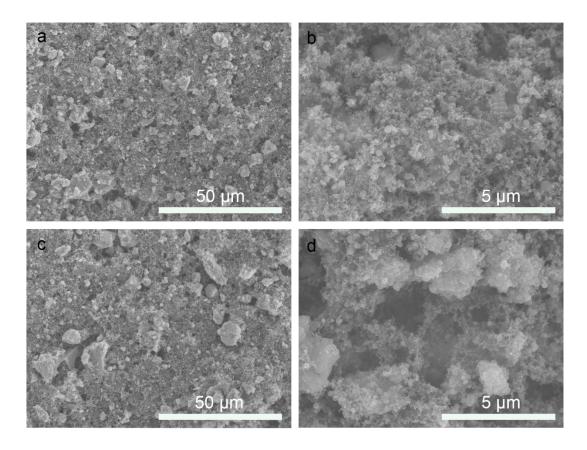


Figure S11. SEM patterns of the synthesized CuF_2 cathode (a and b) before cycling and (c and d) after 10 cycles.

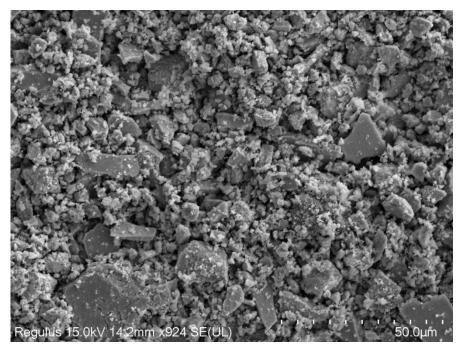


Figure S12. SEM image of the morphology of CuF_2 cathode.

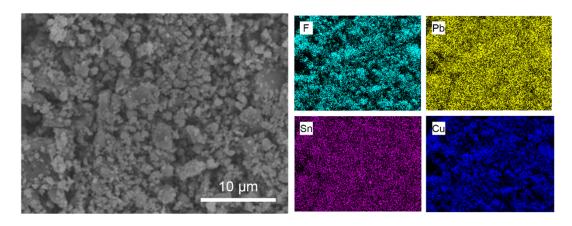


Figure S13. SEM image and the corresponding EDS mapping results of the CuF_2 cathode.

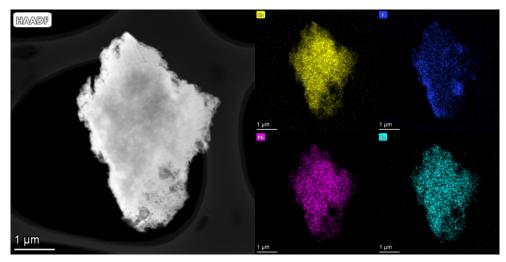
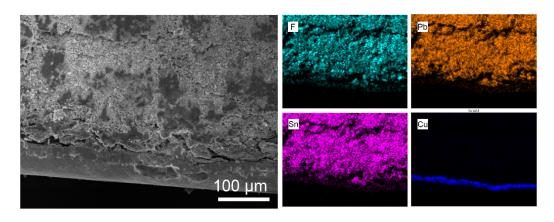
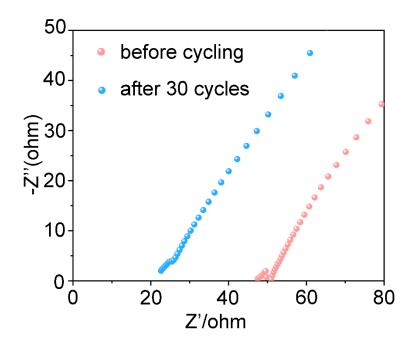
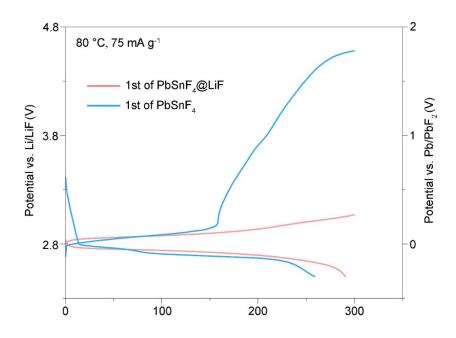
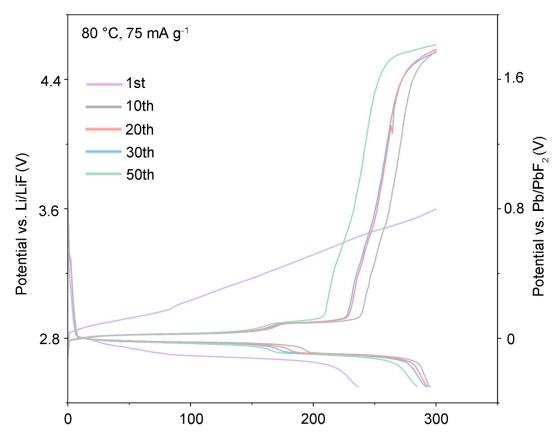
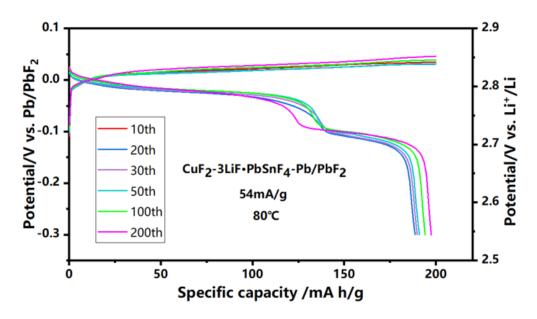


Figure S14. STEM image and the corresponding EDS mapping results of the CuF_2 cathode.


Figure S15. SEM image and the corresponding EDS mapping results of the CuF_2 cathode after cycling.


Figure S16. EIS patterns of CuF₂|PbSnF₄@LiF|Pb+PbF₂ full cells before cycling and after 30 cycles.

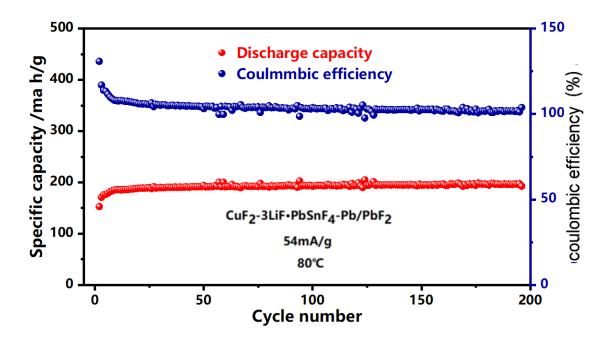

Figure S17. The initial discharge/charge curves of the assembled $CuF_2|PbSnF_4|Pb+PbF_2$ and $CuF_2|PbSnF_4@LiF|Pb+PbF_2$ full cells at the current density of 75 mA g⁻¹ with a capacity of 300 mAh g⁻¹.

Figure S18. The discharge/charge curves of the $CuF_2|PbSnF_4|Pb+PbF_2$ full cell after 1-50 cycles at the current density of 75 mA g⁻¹.

Figure S19. The voltage-capacity curves of the assembled $CuF_2|3LiF$ -PbSnF₄|Pb/PbF₂ full cells at room temperature with a capacity of 200 mAh g⁻¹.

Figure S20. The cycling performance of the $CuF_2|3LiF \cdot PbSnF_4|Pb/PbF_2$ full cell with a capacity of 200 mAh g⁻¹.

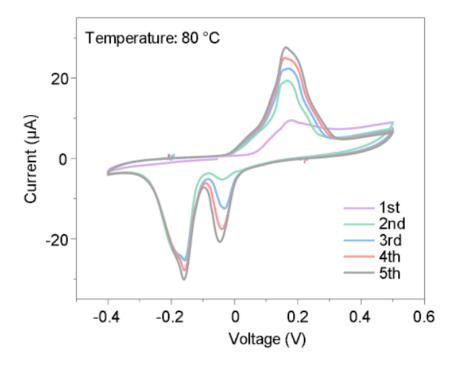


Figure S21. CV curves of the $CuF_2|PbSnF_4@LiF|Pb+PbF_2$ full cell at 0.02 mV s⁻¹.

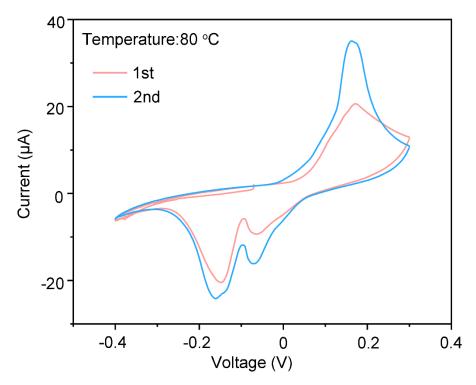


Figure S22. CV curves of the $CuF_2|PbSnF_4|Pb+PbF_2$ full cell at 0.02 mV s⁻¹

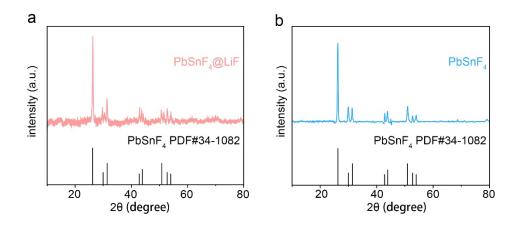


Figure S23. XRD patterns of the obtained (a) $PbSnF_4@LiF$ and (b) $PbSnF_4$ after cycles.

Cathode/SE/Anode	Cycle number	Current density (mA g ⁻¹)	Tempe -rature (°C)	Capacity at 1 _{st} discharge (mAh g ⁻¹)	Capacity Retention (mAh g ⁻¹)
BiF ₃ / PbSnF ₄ /Sn	120	40	25	115.6	102.1
BiF ₃ / PbSnF ₄ /Sn	100	8	-20	90.1	84.6
$Sr_{3}Fe_{2}O_{5}F_{2}/La_{0.9}Ba_{0.1}F_{2.9}/Pb\text{-}PbF_{2}$	70	5	140	94.4	118
$CuF_2/\ La_{0.95}Sr_{0.05}F_{2.95}/Pb\text{-}PbF_2$	10	9.5	25	410	459
$GLG300/\ La_{0.97}Ba_{0.03}F_{2.97}$	9	0.63	75	155	144
Ag/SSR-PK10/ Pb-PbF2	100	6	25	190.6	152
$CuF_{2}/\ KSn_{2}F_{5}/Sn\text{-}SnF_{2}$	70	20	60	442.7	150
BiF ₃ / PbSnF ₄ / Pb-PbF ₂	50	10	25	210.5	173.9
BiF ₃ / PbSnF ₄ /Sn	10	10	25	175	80
BiF ₃ /Ba _{0.95} Ce _{0.05} SnF _{4.05} /Sn	30	10	25	170.9	84.5
BiF3/La0.95Ba0.05F2.95/Ce	8	4	60	245	90
$CuF_2/La_{0.9}Ba_{0.1}F_{2.9}/La$	23	4	150	360	40
$BiF_3/Ba_{0.98}Eu_{0.02}F_{4.02}/Sn$	20	10	25	106	72
BiF ₃ / La _{0.9} Ba _{0.1} F _{2.9} -BaSnF ₄ /Ce	5	10	150	251	119

 Table S1. Summary of the performance of all solid-state fluoride ion batteries

assembled with various solid electrolytes.

site	X	У	Z	Occupancy			
2c	0	0.5	0.142840	1			
2c	0	0.5	0.618920	0.7			
2c	0	0.5	0.618920	0.3			
2c	0	0.5	0.334240	1			
4f	0	0	0.201400	0.9			
2b	0	0	0.500000	0.9			
	2c 2c 2c 2c 2c 4f	2c 0 2c 0 2c 0 2c 0 2c 0 4f 0	site x y 2c 0 0.5 4f 0 0	sitexyz2c00.50.1428402c00.50.6189202c00.50.6189202c00.50.3342404f000.201400			

Table S2. Structure parameters of β -PbSnF₄.

The space group is P4/nmm. Refined lattice parameters are a = 4.3685 Å, b = 4.3685 Å, c = 11.0854 Å.