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Fig. S1. Schematic diagram of oblique angle (30°, 45° and 60°) and vertical sputtering

(90°) in a magnetron sputtering chamber.

Fig. S2. (a-g) SEM images of Zn-30, Zn-45, Zn-60, Zn-2, Zn-5, Zn-8, and Zn-15,

respectively, at a scale of 500 nm.



Fig. S3. (a-g) Cross-sectional SEM images of Zn-30, Zn-45, Zn-60, Zn-2, Zn-5, Zn-8

and Zn-15, respectively.

Fig. S4. (a-h) 2D and 3D views of bare-Zn, Zn-30, Zn-45, Zn-60, Zn-2, Zn-5, Zn-8 and

Zn-15, respectively.
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Fig. S5. (a-h) Pore size distribution curves of bare-Zn, Zn-30, Zn-45, Zn-60, Zn-2,

Zn-5, Zn-8 and Zn-15, respectively.

Fig. S6. (a) Cross-sectional SEM image of Zn-45 and (b-d) the corresponding EDX

mapping images of Zn, S, and O, respectively.
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Fig. S7. (a and b) SEM images of bare-Zn and Zn-45 after 7 days of resting,

respectively; (¢) XRD patterns of bare-Zn and Zn-45 after 7 days of resting.
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Fig. S8. (a-g) Chronoamperograms (CAs) of bare-Zn, Zn-30, Zn-45, Zn-60, Zn-2, Zn-

5, Zn-8 and Zn-15 at an overpotential of -150 mV, respectively.
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Fig. S9. (a) Coulombic efficiencies of bare-Zn, Zn-30, Zn-45, Zn-60, Zn-2, Zn-5, Zn-8

and Zn-15 asymmetric batteries at 1 mA cm2; (b-i) Voltage profiles of bare-Zn, Zn-30,

Zn-45, Zn-60, Zn-2, Zn-5, Zn-8 and Zn-15 asymmetric batteries at different cycles,

respectively.
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Fig. S10. (a-h) Voltage-time curves of bare-Zn, Zn-30, Zn-45, Zn-60, Zn-2, Zn-5, Zn-

8 and Zn-15 asymmetric batteries, respectively.
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Fig. S11. (a-h) Rate p
and Zn-15 symmetric

and 10 mA cm?).

erformance of bare-Zn, Zn-30, Zn-45, Zn-60, Zn-2, Zn-5, Zn-8,

batteries, respectively, at different current densities (0.5, 1, 2, 5,
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Fig. S12. Schematic diagram of the three-electrode device. The device contains two

electrodes to be tested (bare-Zn/sputtering-Zn) and the reference electrode was

untreated Zn foil.
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Fig. S13. Voltage-time curves of bare-Zn and Zn-45 of the full tests at 2 mA cm with

1 mAh cm™.



Fig. S14. (a-d) SEM images of bare-Zn under different cycles (10th, 20th, and 30th),
respectively; (e-h) SEM images of Zn-45 under different cycles (10th, 20th, and 30th),
respectively; (i-1) Cross-sectional SEM images of Zn-45 after different cycles (10th,

20th and 30th), respectively.
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Fig. S15. (a-d) EDX mapping images of bare-Zn and Zn-45 after different cycles (20th

and 30th), respectively.
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Fig. S16. (a and b) XRD patterns of bare-Zn and Zn-45 after different cycles (10th,

20th, and 30th), respectively.
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Fig. S17. (a and b) Voltage-time curves of bare-Zn and Zn-45 symmetric batteries at

1 mA cm™2 in 150-152 h and 1600-1602 h, respectively.
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Fig. S18. (a and b) Voltage-time curves of bare-Zn and Zn-45 symmetric batteries at

2 mA cm™2 in 100-102 h and 950-952 h, respectively.
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Fig. S19. (a-c) Under no resting time conditions, voltage-time curves of bare-Zn and

Zn-45 symmetric batteries at 0.5, 1 and 2 mA cm2, respectively.
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Fig. S20. Voltage-time curves of bare-Zn and Zn-45 asymmetric batteries at 2 mA cm™.
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Fig. S21. Long-team cycling performance of bare-Zn and Zn-45 symmetric batteries at

5 mA cm™.
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Fig. S22. (a) Voltage-time curves of bare-Zn and Zn-45 asymmetric batteries at 5 mA

cm?; (b) Coulombic efficiency of bare-Zn and Zn-45 asymmetric batteries at 5 mA

cm?; (¢ and d) Voltage-capacity curves of bare-Zn and Zn-45 at 5 mA cm?,

respectively.
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Fig. S23. (a and c) The cycling stability test and (b and d) the corresponding initial

discharge curve of the Zn-45 and bare-Zn symmetric batteries with the amount of
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electrolyte is 150 puL and 100 pL at 0.5 mA cm?, respectively.

Fig. S24. SEM images of bare-Zn after 550 cycles at a size of 100 pm.

Fig. S25. EDX images of Zn-45 after 550 cycles.
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Fig. S26. Cross-sectional EDX images of Zn-45 after 550 cycles.
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Fig. S27. (a) SEM image of a-MnO,; (b) XRD pattern of a-MnO,.
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Fig. S28. Galvanostatic charge-discharge curves of bare-Zn and Zn-45 full batteries at
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Fig. S29. (a and b) Galvanostatic charge-discharge curves of bare-Zn and Zn-45 full

batteries at different current densities, respectively.
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Fig. S30. Energy efficiency of bare-Zn and Zn-45 full batteries at different current

densities.
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Fig. S31. Corresponding real parts of the impedance (Z’) versus reciprocal square root
of the angular frequencies (®) in the low-frequency region.
The ion-diffusion coefficient (D) was obtained from the low-frequency region

using the equation (1):!
R’T
D= o
24 F P (1)

In this equation, R represents the gas constant, 7" is the absolute temperature, 4
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denotes electrode area, n indicates the number of transferred electrons, F corresponds
to the Faraday constant, C refers to the concentration of Zn?* ions in the electrolyte, and
o stands for the Warburg coefficient. The ¢ value was determined from the slope of the
7' vs. w93 plot (Fig. S31), based on the relationship Z' = Rs + Rct + ow™03. The
calculated ion-diffusion coefficient for the Zn-45 full batteries was ~5.1 x 107! cm? s~
I, which is significantly higher than for the bare-Zn electrode (~4.8 x 10712 cm? s71).
The reduction in the ¢ value of the Zn-45 electrode implies an augmentation in ionic
conductivity. This is attributed to the composite layer of ZHS and porous zinc, which

facilitates the rapid stripping and plating of zinc ions, thereby enhancing the

performance of the full battery.
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Table S1. Surface roughness parameters of the bare-Zn, Zn-30, Zn-45, Zn-60, Zn-2,

Zn-5, Zn-8 and Zn-15, respectively.

Bare- 90°

Parameter Zn-30 7/n-45 Zn-60
Zn Z/n-2 Zn-5 Zn-8 Z/n-15

Ra (nm) 77417  571.17  1249.43 774.45 699.27  1075.99 562.90 873.63
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Table S2 The typical parameters and cycling performance of Zn-45° compared with
some reported Zn-based symmetric batteries.

Current Voltage
Electrode Electrolyte (iizs::z;_ Life (h) pola(llrliil;uon Ref.
%)
0.5 3300 77.8 This
Zn-45 2 M ZnSOy, 1.0 1680 123.3
work
2.0 1000 146.3
DCP-Zn 2 M ZnSOy, 0.5 1400 60 2
CaCOs@Zn 3 Mﬁfﬁg& 01 0.25 800 105 3
PCu@Zn 2 M ZnSOy, 10 200 80 4
Zn@ZIF8 2 M ZnSOy, 0.5 680 100 5
ZnO:S@Zn 2 M ZnSOy, 0.5 1700 45 6
saos@zn oM hfﬁfs‘go‘l 1.0 200 80 7
Faceted TiO, 1 M ZnSO, 1.0 460 50 8
ZnLiMn 2 M ZnSO, 1.0 1000 30 9
ZnSe@Zn 2 M ZnSOy4 1.0 1531 32 10
AgZn; 2 M ZnSOy4 0.25 1700 59 11
Zn/Sn@Cu foam 1 M ZnSO, 1.0 1800 90 12
NiCo-LDH 2 M ZnSOy, 1.0 2500 20 13
NA-Zn 3 M ZnSO, 0.25 2000 200 14
MoS,@Zn IMZnSO, +IM ) g0 120 15
MnSO,
NFZP@Zn 1 M ZnSOy, 2.0 900 45 16
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