Supplementary Information

Oxygen vacancy engineering in MXene for sustainable electrochemical energy conversion and storage applications

Vaishali Sharma^a, Jasvir Singh^a, Rajnish Dhiman^b, Davinder Pal Sharma^c, Aman Mahajan^{a*}

^aDepartment of Physics, Guru Nanak Dev University, Amritsar 143005, India

^bDepartment of Physics, Malaviya National Institute of Technology, Jaipur 302017, India

^cDepartment of Physics, University of West Indies, St. Augustine, Trinidad and Tobago

*Corresponding Author

Department of Physics, Guru Nanak Dev University, Amritsar-143005, India. Email: <u>aman.phy@gndu.ac.in</u>

Figure S1. EDS spectra and elemental mapping for (a) 3-EuM, (b) 5-EuM, and (c) 7-EuM samples.

Figure S2. XPS survey scan spectra for 3-EuM, 5-EuM, and 7-EuM samples.

Figure S3. Comparison of LSV polarization curves of 5-EuM sample in acidic, alkaline, and neutral mediums.

Figure S4. Post catalytic (a) XRD and (b) SEM image of 5-EuM sample.

Figure S5. Comparison of LSV polarization curves (a) electrocatalytic, (b) photocatalytic using Pt and graphite rod counter electrodes.

Figure S6. (a-b) UV-Vis absorption spectra of CdS and Eu_2O_3 and (inset) Tauc plot estimating the band gap values, (c-d) M-S plots for CdS and Eu_2O_3 estimating the flat-band potential (V_{fb}).

Figure S7 (a) Total density of states (TDOS) of MXene and $Eu_2O_3/MXene-O_v$, and (b) magnified view of the total density of states near the Fermi level.

Catalyst	Overpotential (mV)		Specific Capacitance	Current density	Reference
	HER	OER			
Ni _x Cu _y MX–NF	111.0	185.2	380.86	0.5 mA/cm ²	1
WS ₂ /MC	-	307.0	305.45 F/g	10 mV s ⁻¹	2
CTAB-rGO/MXene	179.0	360	544.5 F/g	0.5A/g	3
Na-MnO _{2-x}	439.7	381.2	395 F/g	5 mA/cm ²	4
Ti ₃ C ₂ T _x /NH ₂ -RGO/MoSn ₂ Se ₄	-	-	120.2 F/g	1 A/g	5
NiCo ₂ O ₄ @NiCo ₂ S ₄	59	201	1039 C/g	2A/g	6
MXene/MnO ₂	-	-	242 F/g	1 A/g	7
Ni–NiO/Ti ₃ C ₂ T _x	72.0	248.0	-	-	8
Eu ₂ O ₃ /Ti ₃ C ₂ T _X MXene	63.0	169.0	374.98 F/g	0.6 A/g	This Work

Table S1. Comparison of water splitting and supercapacitor parameters for $Ti_3C_2T_x$ MX enebased catalyst.

References

- 1 A. Raveendran, M. Chandran, M. R. Siddiqui, S. M. Wabaidur, S. Angaiah and R. Dhanusuraman, *Sustain. Energy Fuels*, 2024, **8**, 1509–1525.
- 2 M. Iqbal, N. G. Saykar, A. Singh, I. Ahmed, A. Arya, K. K. Haldar and S. K. Mahapatra, *Adv. Mater. Technol.*, 2024, **9**, 2301797.
- 3 A. Raveendran, M. Chandran, M. R. Siddiqui, S. M. Wabaidur, M. Eswaran and R. Dhanusuraman, *ACS Omega*, 2023, **8**, 34768–34786.
- 4 B. Thanigai Vetrikarasan, A. R. Nair, S. K. Shinde, D.-Y. Kim, J. M. Kim, R. N. Bulakhe, S. N. Sawant and A. D. Jagadale, *J. Energy Storage*, 2024, **94**, 112457.
- 5 S. De, S. Roy and G. C. Nayak, *Mater. Today Nano*, 2023, **22**, 100337.
- Z. Sun, L. Sun, S. W. Koh, J. Ge, J. Fei, M. Yao, W. Hong, S. Liu, Y. Yamauchi and H.
 Li, *Carbon Energy*, 2022, 4, 1262–1273.
- Q. Wang, Z. Zhang, Z. Zhang, X. Zhou and G. Ma, J. Solid State Electrochem., 2019, 23, 361–365.
- 8 B. Zhang, Z. Du, R. Sun, X. Lai, J. Lan, X. Liu and L. Yan, *ACS Appl. Mater. Interfaces*, 2022, **14**, 47529–47541.