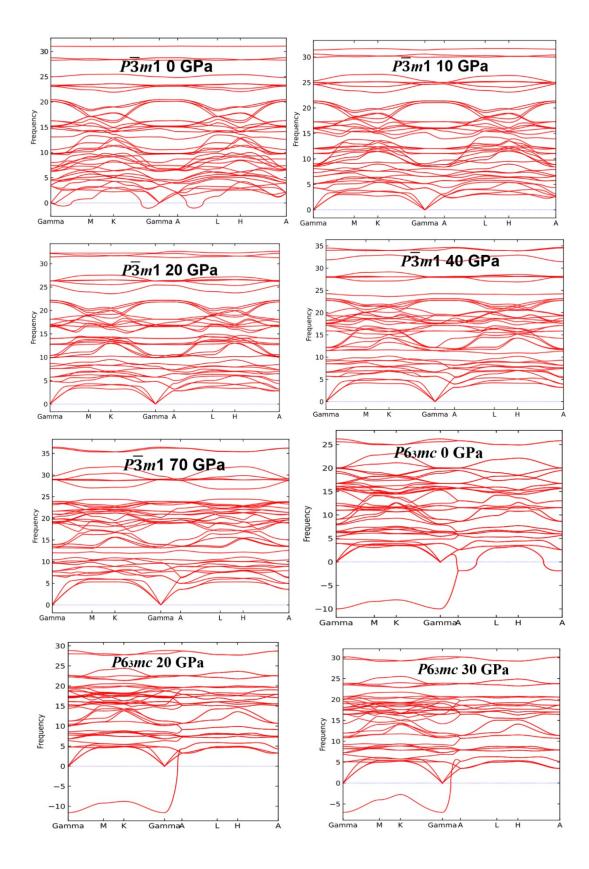
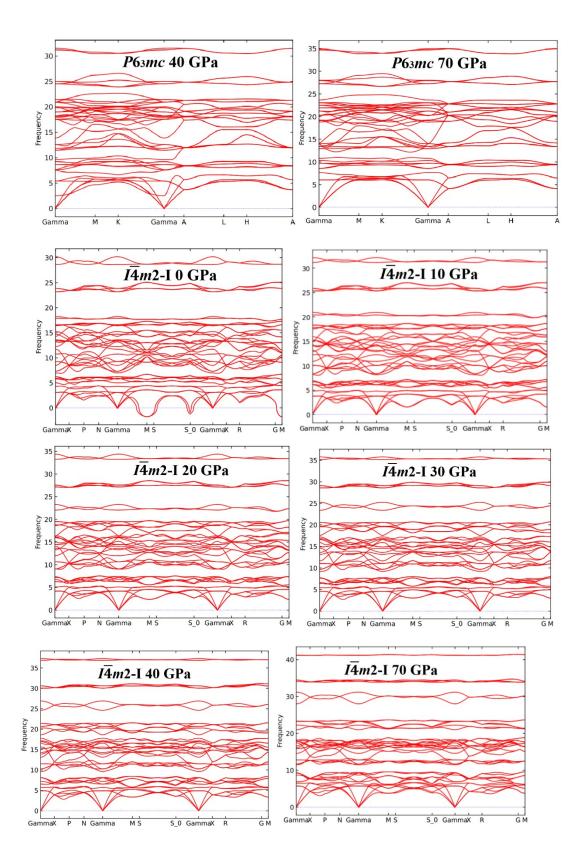
Supplement Information for

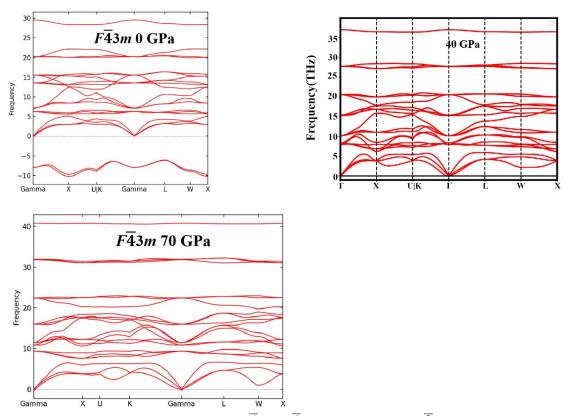
Exploring the superconductivity of CaSrB₅: High-

Pressure Stability and Electron-Phonon Interactions

Bohan Cao¹, Mengxin Yang¹, Yibo Sun¹, Xinwei Wang¹, Fubo Tian^{*1},

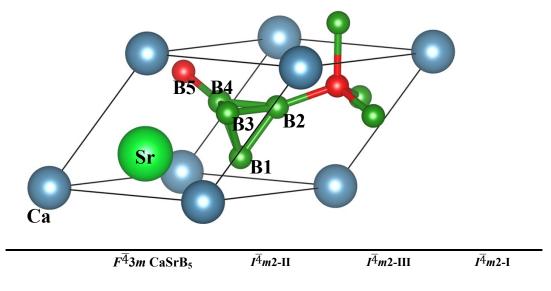

Tian Cui*2,1


¹State Key Laboratory of Superhard Materials, College of Physics, Jilin


University, Changchun 130012, China

²School of Physical Science and Technology, Ningbo University, Ningbo

315211, China



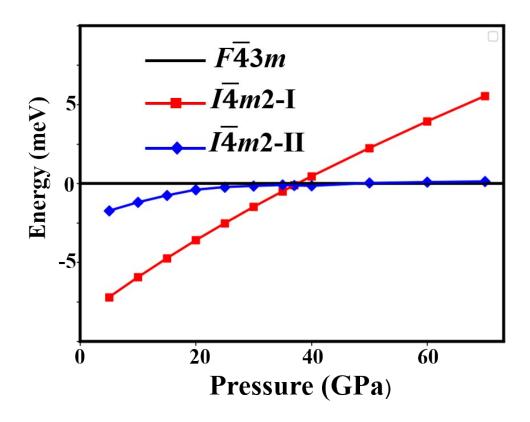
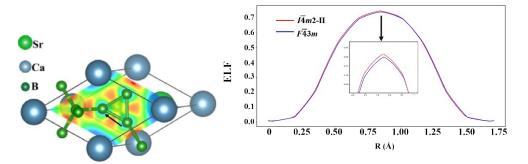


FIG. S1 The phonon spectrum of $F^{\overline{4}}3m$, $I^{\overline{4}}m2$ -I, $P6_3mc$ and $P^{\overline{3}}m1$ phase at various pressure by phonopy codes [1].


Table S1. The bond lengths of $F^{\overline{4}}3m$ phase, $I^{\overline{4}}m^2$ phase by moving atoms and USPEX.

d(Ca-Ca)	4.562	4.562	4.562	4.547
d(Ca-Sr)	2.794	2.784	2.794	2.797
d(Sr-Sr)	4.562	4.562	4.562	4.547
d(B1-B2) = d(B3-B4)	1.706	1.695	1.730	1.795
d(B1-B3) = d(B2-B3) = d(B1-B4) = d(B2-B4)	1.706	1.712	1.695	1.668
d(B4-B5)	1.749	1.749	1.749	1.752
d(Ca-B5)	2.794	2.794	2.794	3.260
d(Sr-B5)	3.226	3.226	3.226	2.797

FIG. S2 The enthalpy differences between the $F\overline{4}3m$, $I\overline{4}m2$ -I and $I\overline{4}m2$ -II phases at range of 0 – 70 GPa.

FIG. S3 The ELF values across the B-B bond (along the black line) of $F^{\overline{4}}3m$ and $I^{\overline{4}}m2$ -II phases.

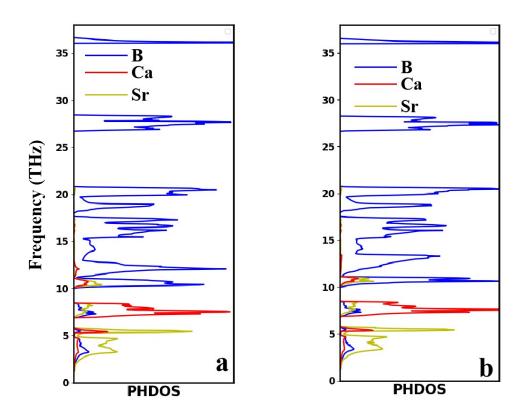
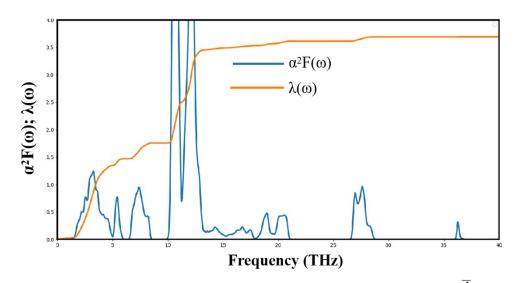



FIG. S4 the phdos of $CaSrB_5$ under both (a) harmonic and (b) anharmonic approximations

FIG. S5. Eliashberg spectral function $\alpha^2 F(\omega)$, and accumulated $\lambda(\omega)$ for $F^{\overline{4}}3m$ phase by EPW codes[2]

structur	Lattice	atoms	(X, Y, Z)
e	paremeters		
$F\overline{4}3m$	a=b=c=6.365Å	Ca(4a)	(0.500, 0.000, 0.500)
	α=β=γ=90°	Sr(4c)	(0.750, 0.750, 0.250)
		B(16e)	(0.406, 0.906, 0.094)
		B(4d)	(0.750, 0.750, 0.750)
$P\overline{3}_{m1}$	a=b=4.370 Å	Ca(2d)	(0.333,0.667,0.433)
	c=7.743 Å	Sr(2d)	(0.333,0.667,0.065)
	α=β=90°	B(2c)	(0.000,0.000,0.831)
	γ=120°	B(2c)	(0.000,0.000,0.391)
		B(6i)	(0.204,0.796,0.736)
<i>I</i> 4 <i>m</i> 2-I	a=b=4.552 Å	Ca(2c)	(0.000, 0.500, 0.250)
	c=6.242 Å	Sr(2a)	(0.500, 0.500, 0.500)
	α=β=γ=90°	B(8i)	(0.695,0.500,0.914)
		B(2d)	(0.500,0.000.0.250)
	a=b=4.369 Å	Ca(2b)	(0.667, 0.333, 0.097)
	c=7.614 Å	Sr(2b)	(0.333,0.667,0.969)
$P6_3mc$	α=β=90°	B(2a)	(0.000, 0.000, 0.161)
	γ=120°	B(2a)	(0.000, 0.000, 0.404)
		B(6c)	(0.202,0.798,0.282)

Table S2. The Predicted structural parameters of CaSrB₅ compounds at 40 GPa

REFERENCES

- [1] A. Togo, I. Tanaka, Scr. Mater.2015, 108, 1-5.
- [2] S. Poncé, E. R. Margine, C. Verdi, and F. Giustino, Comp. Phys. Commun. 2016, 209, 116.