## **Supporting Information**

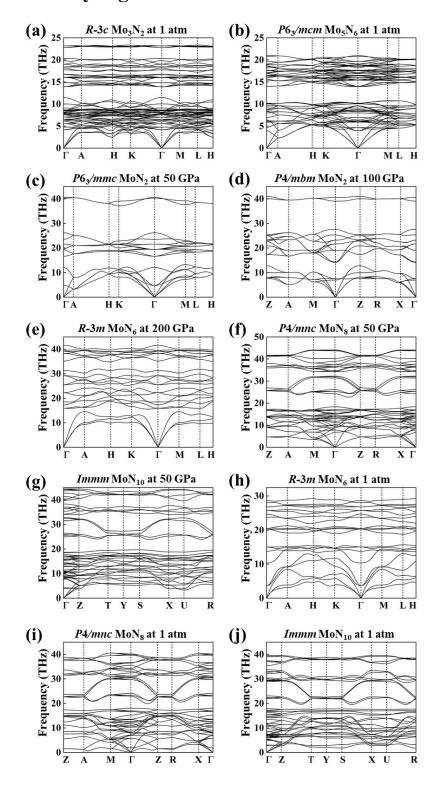
# Prediction of Structural Stability and Explosive Performance of N-rich Mo-N Compounds under High

#### **Pressures**

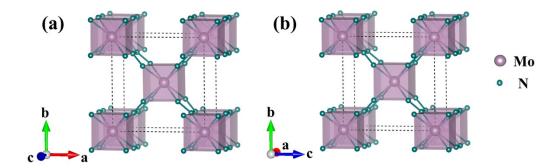
Jianyan Lin, Xin Liu, and Guangmin Yang\*

College of Physics, Changchun Normal University, Changchun 130032, China \*Address correspondence to: yangguangmin@mail.ccsfu.edu.cn

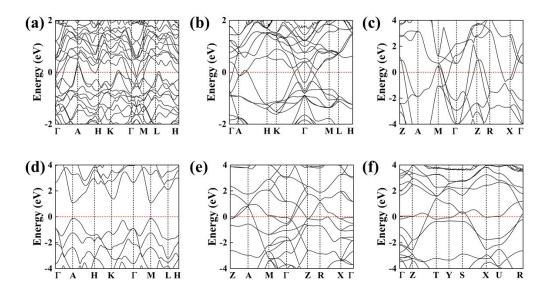
| Index Page                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------|
| 1. Computational details ————————————————————————————————————                                                                     |
| 2. Phonon dispersion curves for the predicted Mo-N compounds4                                                                     |
| <b>3.</b> Crystal structures of $P4/mnc$ MoN <sub>8</sub> and $Immm$ MoN <sub>8</sub> at 1 atm5                                   |
| 4. Electronic band structures of the predicted Mo-N compounds5                                                                    |
| <b>5.</b> Explosive performance of $P6_3/mmc$ MoN <sub>2</sub> , $P4/mbm$ MoN <sub>2</sub> , $Immm$ MoN <sub>8</sub> ···········6 |
| <b>6.</b> Comparison of detonation parameters by various methods6                                                                 |
| 7. Elastic constants of the predicted Mo-N compounds at 1 atm7                                                                    |
| <b>8.</b> Structural information of the predicted stable compounds9                                                               |
| <b>9.</b> References ————————————————————————————————————                                                                         |


#### **Computational Details**

Our structural prediction approach is based on a global minimization of free energy surfaces merging ab initio total-energy calculations with CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization) methodology as implemented in the CALYPSO code. 1,2 The structures of stoichiometry  $Mo_xN_y$  (x = 1, y = 1 - 11; x = 2,y = 1, 3; x = 3, y = 1, 2, 4, 5; x = 4, y = 1, 3, 5; x = 5, y = 1, 4, 6) were searched with simulation cell sizes of 1 - 4 formula units (f.u.) at 1 atm and 25, 50, 100, 200 GPa. In the first step, random structures with certain symmetry are constructed in which atomic coordinates are generated by the crystallographic symmetry operations. Local optimizations using the VASP code<sup>3</sup> were done with the conjugate gradients method and stopped when total energy changes became smaller than  $1 \times 10^{-5}$  eV per cell. After processing the first generation structures, 60% of them with lower enthalpies are selected to construct the next generation structures by PSO (Particle Swarm Optimization). 40% of the structures in the new generation are randomly generated. A structure fingerprinting technique of bond characterization matrix is applied to the generated structures, so that identical structures are strictly forbidden. These procedures significantly enhance the diversity of the structures, which is crucial for structural global search efficiency. In most cases, structural searching simulations for each calculation were stopped after generating 1000 ~ 1200 structures (e.g., about 20  $\sim 30$  generations).


Structural optimization and electronic structure calculations were performed with the framework of density functional theory (DFT)<sup>4,5</sup> within the Perdew-Burke-Ernzerhof (PBE)<sup>6</sup> functional of the generalized gradient approximation (GGA),<sup>7</sup> as implemented by the VASP (Vienna *Ab initio* Simulation Package) code. The all-electron projector augmented-wave (PAW)<sup>8</sup> pseudopotentials of Mo and N treat  $4d^55s^1$  and  $2s^22p^3$  electrons as the valence electrons, respectively. The cutoff energy was set at 700 eV, and Monkhorst-Pack scheme<sup>9</sup> with a *k*-point grid of  $2\pi \times 0.03$  Å<sup>-1</sup> in Brillouin zone was selected to ensure that all enthalpy calculations converged to less than 1 meV per atom. The dynamical stability of predicted structures was

determined by phonon calculations using a supercell approach with the finite displacement method<sup>10</sup> as implemented in the Phonopy code.<sup>11</sup> Crystal orbital Hamilton population (COHP) analysis giving the information on the interatomic interaction was implemented in the LOBSTER package.<sup>12,13</sup> The calculation accuracy is consistent with that of the other parts. The electron localization function (ELF)<sup>14</sup> was calculated using VASP code.


## **Supplementary Figures**



**Figure S1.** Phonon dispersion curves of the predicted Mo-N binary compounds. The absence of any imaginary frequency modes in the first Brillouin zone indicates the dynamical stability of the predicted compounds.



**Figure S2.** Crystal structures of (a) MoN<sub>8</sub> in P4/mnc symmetry at 1 atm, (b) MoN<sub>8</sub> in *Immm* symmetry after the removal of isolated N<sub>2</sub> of *Immm* MoN<sub>10</sub> at 1 atm.



**Figure S3.** Electronic band structures for (a) R-3c Mo<sub>3</sub>N<sub>2</sub> at 1 atm, (b)  $P6_3/mcm$  Mo<sub>5</sub>N<sub>6</sub> at 1 atm, (c) P4/mbm MoN<sub>2</sub> at 100 GPa, (d) R-3m MoN<sub>6</sub> at 200 GPa, (e) P4/mnc MoN<sub>8</sub> at 50 GPa and (f) Immm MoN<sub>10</sub> at 50 GPa.

### **Supplementary Table**

**Table S1.** Calculated mass density ( $\rho$ ), energy density ( $E_d$ ), volumetric energy density ( $E_v$ ), detonation velocity ( $V_d$ ), and detonation pressure ( $P_d$ ) of the predicted  $P6_3/mmc$  MoN<sub>2</sub>, P4/mbm MoN<sub>2</sub>, and Immm MoN<sub>8</sub>, compared with TNT, and HMX.

| Compounds                             | ρ (g cm <sup>-3</sup> ) | $E_{\rm d}$ (kJ g <sup>-1</sup> ) | <i>E</i> <sub>v</sub> (kJ cm <sup>-3</sup> ) | $V_{\rm d}$ (km s <sup>-1</sup> ) | P <sub>d</sub> (GPa) |
|---------------------------------------|-------------------------|-----------------------------------|----------------------------------------------|-----------------------------------|----------------------|
| P6 <sub>3</sub> /mmc MoN <sub>2</sub> | 7.15                    | 0.07                              | 0.50                                         | 2.74                              | 5.52                 |
| P4/mbm MoN <sub>2</sub>               | 7.93                    | 1.04                              | 8.25                                         | 5.93                              | 26.40                |
| Immm MoN <sub>8</sub>                 | 3.84                    | 2.51                              | 9.64                                         | 8.81                              | 48.66                |
| TNT <sup>15</sup>                     | 1.64                    | 4.30                              | 7.05                                         | 6.90                              | 19.00                |
| HMX <sup>15</sup>                     | 1.90                    | 5.70                              | 10.83                                        | 9.10                              | 39.30                |

The following decomposition reactions are considered to determine the energy density and detonation parameters:

$$5\text{MoN}_2 \rightarrow \text{Mo}_5\text{N}_6 + 2\text{N}_2$$
 (1)

$$5\text{MoN}_8 \rightarrow \text{Mo}_5\text{N}_6 + 17\text{N}_2$$
 (2)

**Table S2.** Comparison of detonation velocity  $(V_d)$ , and detonation pressure  $(P_d)$  calculated by different methods of the predicted compounds.

| Compounds -                           |                          | V <sub>d</sub> (km s <sup>-1</sup> | 1)                     | $P_{\rm d}$              | (GPa)           |
|---------------------------------------|--------------------------|------------------------------------|------------------------|--------------------------|-----------------|
|                                       | <i>K-J</i> <sup>16</sup> | $W^{17}$                           | Stine-S2 <sup>18</sup> | <b>K-J</b> <sup>16</sup> | W <sup>17</sup> |
| R-3m MoN <sub>6</sub>                 | 18.25                    | 12.41                              | 20.57                  | 251.61                   | 210.56          |
| P4/mnc MoN <sub>8</sub>               | 11.71                    | 9.75                               | 13.69                  | 94.69                    | 87.06           |
| Immm MoN <sub>10</sub>                | 12.16                    | 10.34                              | 14.03                  | 100.21                   | 91.62           |
| Immm MoN <sub>8</sub>                 | 8.81                     | 7.46                               | 10.86                  | 48.66                    | 38.23           |
| P6 <sub>3</sub> /mmc MoN <sub>2</sub> | 2.74                     | 2.41                               | 8.13                   | 5.52                     | 6.93            |
| P4/mbm MoN <sub>2</sub>               | 5.93                     | 3.43                               | 9.88                   | 26.40                    | 15.56           |

**Table S3.** The calculated elastic constants  $C_{ij}$  in GPa for the predicted compounds.

|          | P4/mbm MoN <sub>2</sub> | R-3m MoN <sub>6</sub> | P4/mnc MoN <sub>8</sub> | Immm MoN <sub>10</sub> |
|----------|-------------------------|-----------------------|-------------------------|------------------------|
| $C_{11}$ | 685.411                 | 567.519               | 215.028                 | 750.032                |
| $C_{22}$ | 685.411                 | 567.519               | 215.028                 | 233.050                |
| $C_{33}$ | 735.730                 | 640.244               | 784.565                 | 262.655                |
| $C_{44}$ | 235.246                 | 315.758               | 120.632                 | 122.910                |
| $C_{55}$ | 235.246                 | 315.758               | 120.632                 | 95.7957                |
| $C_{66}$ | 244.584                 | 242.287               | 109.752                 | 98.4681                |
| $C_{12}$ | 184.014                 | 82.9454               | 176.725                 | 19.7664                |
| $C_{13}$ | 162.492                 | 111.652               | 47.5058                 | 16.3849                |
| $C_{23}$ | 162.492                 | 111.652               | 47.5058                 | 112.869                |
| $C_{14}$ |                         | -45.4841              |                         |                        |
| $C_{24}$ |                         | 45.4841               |                         |                        |
| $C_{56}$ |                         | -45.4841              |                         |                        |

For P4/mbm MoN<sub>2</sub> and P4/mnc MoN<sub>8</sub> with tetragonal symmetry, the mechanical stability can be judged from the following criterion:

$$C_{11} > |C_{12}|,$$
  
 $2C_{13}^2 < C_{33}(C_{11} + C_{12}),$   
 $C_{44} > 0, C_{66} > 0.$ 

For R-3m MoN<sub>6</sub> with rhombohedral symmetry, the mechanical stability can be judged from the following criterion:

$$C_{11} > |C_{12}|, C_{44} > 0,$$

$$C_{13}^2 < \frac{1}{2}C_{33}(C_{11} + C_{12})$$

$$C_{14}^2 < \frac{1}{2}C_{44}(C_{11} - C_{12}) \equiv C_{44}C_{66}$$

For Immm MoN<sub>10</sub> with orthohombic symmetry, its mechanical stability can be judged from the following criterion:

$$\begin{split} &C_{11} > 0, C_{11}C_{22} > C_{12}^2, \\ &C_{11}C_{22}C_{33} + 2C_{12}C_{13}C_{23} - C_{11}C_{23}^2 - C_{22}C_{13}^2 - C_{33}C_{12}^2 > 0, \\ &C_{44} > 0, C_{55} > 0, C_{66} > 0 \end{split}$$

**Table S4.** Structural parameters of the predicted stable compounds.

|                                                     | Pressure<br>(GPa) | Lattice             | Positions    |             |          |          |
|-----------------------------------------------------|-------------------|---------------------|--------------|-------------|----------|----------|
| Phases                                              |                   | Parameters          | (fractional) |             |          |          |
|                                                     |                   | (Å,°)               | Atoms        | Atoms x y z |          |          |
| $R-3c \text{ Mo}_3\text{N}_2$                       | 0                 | a = 10.23790        | Mo(12f)      | -0.88698    | -0.18582 | -0.53631 |
|                                                     |                   | b = 10.23790        | N(2b)        | 0.00000     | 0.00000  | 0.00000  |
|                                                     |                   | c = 10.23790        | N(6e)        | -0.41626    | -0.75000 | -0.08374 |
|                                                     |                   | $\alpha = 28.2871$  |              |             |          |          |
|                                                     |                   | $\beta = 28.2871$   |              |             |          |          |
|                                                     |                   | $\gamma = 28.2871$  |              |             |          |          |
| P6 <sub>3</sub> /mcm Mo <sub>5</sub> N <sub>6</sub> | 0                 | a = 4.90240         | Mo(4d)       | 0.33333     | 0.66667  | 0.50000  |
|                                                     |                   | b = 4.90240         | Mo(4c)       | 0.33333     | 0.66667  | 0.25000  |
|                                                     |                   | c = 11.16220        | Mo(2a)       | 0.00000     | 0.00000  | 0.25000  |
|                                                     |                   | $\alpha = 90.0000$  | N(12k)       | 0.33829     | -0.00000 | 0.63011  |
|                                                     |                   | $\beta = 90.0000$   |              |             |          |          |
|                                                     |                   | $\gamma = 120.0000$ |              |             |          |          |
| P6 <sub>3</sub> /mmc MoN <sub>2</sub>               | 50                | a = 2.78490         | Mo(2c)       | 0.33333     | 0.66667  | 0.25000  |
|                                                     |                   | b = 2.78490         | N(4e)        | 0.00000     | 0.00000  | 0.41262  |
|                                                     |                   | c = 7.62090         |              |             |          |          |
|                                                     |                   | $\alpha = 90.0000$  |              |             |          |          |
|                                                     |                   | $\beta = 90.0000$   |              |             |          |          |
|                                                     |                   | $\gamma = 120.0000$ |              |             |          |          |
| P4/mbm MoN <sub>2</sub>                             | 100               | a = 4.07760         | Mo(2b)       | -0.00000    | 0.00000  | 0.50000  |
|                                                     |                   | b = 4.07760         | N(4g)        | 0.61486     | 0.88514  | 0.00000  |
|                                                     |                   | c = 2.59600         |              |             |          |          |
|                                                     |                   | $\alpha = 90.0000$  |              |             |          |          |
|                                                     |                   | $\beta = 90.0000$   |              |             |          |          |
|                                                     |                   | $\gamma = 90.0000$  |              |             |          |          |
| R-3m MoN <sub>6</sub>                               | 200               | a = 5.54900         | Mo(3a)       | 0.00000     | 0.00000  | 0.00000  |
|                                                     |                   | b = 5.54900         | N(18h)       | 0.12357     | 0.24713  | -0.41955 |
|                                                     |                   | c = 4.09600         |              |             |          |          |
|                                                     |                   | $\alpha = 90.0000$  |              |             |          |          |
|                                                     |                   | $\beta = 90.0000$   |              |             |          |          |
|                                                     |                   | $\gamma = 120.0000$ |              |             |          |          |
| P4/mnc MoN <sub>8</sub>                             | 50                | a = 5.97570         | Mo(2b)       | 0.00000     | 0.00000  | 0.50000  |

|                        |    | b = 5.97570         | N(16i) | 0.57838 | 0.77806 | 1.31992 |
|------------------------|----|---------------------|--------|---------|---------|---------|
|                        |    | c = 3.61150         |        |         |         |         |
|                        |    | $\alpha = 90.0000$  |        |         |         |         |
|                        |    | $\beta = 90.0000$   |        |         |         |         |
|                        |    | y = 90.0000         |        |         |         |         |
| Immm MoN <sub>10</sub> | 50 | a = 3.59590         | Mo(2c) | 0.00000 | 0.00000 | 0.50000 |
|                        |    | b = 6.46790         | N(16o) | 0.82066 | 0.68841 | 0.18183 |
|                        |    | c = 6.78660         | N(4e)  | 0.65490 | 0.00000 | 0.00000 |
|                        |    | $\alpha = 90.00000$ |        |         |         |         |
|                        |    | $\beta = 90.00000$  |        |         |         |         |
|                        |    | y = 90.00000        |        |         |         |         |

#### References

- (1) Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. Crystal structure prediction via particle-swarm optimization. *Phys. Rev. B* **2010**, *82*, 094116.
- (2) Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. CALYPSO: A method for crystal structure prediction. *Comput. Phys. Commun.* **2012**, *183*, 2063-2070.
- (3) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* **1996**, *54*, 11169-11186.
- (4) Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. *Phys. Rev.* **1964,** *136*, B864-B871.
- (5) Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. *Phys. Rev.* **1965**, *140*, A1133-A1138.
- (6) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996,** *77*, 3865-3868.
- (7) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. *Phys. Rev. B* **1992**, *46*, 6671-6687.
- (8) Blöchl, P. E. Projector augmented-wave method. *Phys. Rev. B* **1994**, *50*, 17953-17979.
- (9) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. *Phys. Rev. B* **1976**, *13*, 5188-5192.
- (10) Parlinski, K.; Li, Z. Q.; Kawazoe, Y. First-Principles Determination of the Soft Mode in Cubic ZrO<sub>2</sub>. *Phys. Rev. Lett.* **1997**, *78*, 4063-4066.
- (11) Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl<sub>2</sub>-type SiO<sub>2</sub> at high pressures. *Phys. Rev. B* **2008**, 78, 134106.
- (12) Dronskowski, R.; Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. *J. Phys. Chem.* **1993**, *97*, 8617-8624.

- (13) Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. *J. Comput. Chem.* **2016,** *37*, 1030-1035.
- (14) Becke, A. D.; Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. *J. Chem. Phys.* **1990**, *92*, 5397-5403.
- (15) Kamlet, M. J.; Dickinson, C. Chemistry of detonations. III. Evaluation of the simplified calculational method for chapman jouguet detonation pressures on the basis of available experimental information, *J. Chem. Phys.* **1968**, *48*, 43-50.
- (16) Kamlet, M. J.; Jacobs, S. J. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives, *J. Chem. Phys.* **1968**, *48*, 23-35.
- (17) Wu, X. A simole method for calculating detonation parameters of explosives, *J. Energ. Mater.* **1985**, *3*, 263-277.
- (18) Stine, J. R. On predicting properties of explosives detonation velocity, *J. Energ. Mater.* **1990**, *8*, 41-73.
- (19) Mouhat F, Coudert F-X. Necessary and sufficient elastic stability conditions in various crystal systems, *J. Phys Rev B.* **2014**, 90(22): 224104.