Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Graphene Oxide Dough Composites: Direct Mixing and Structural Design Strategies for Highperformance Electronics and Energy Applications

Authors: Seoyeon Park^{a,b}, Jeonghyun Yoo^a, Kyeong Ja Kim^c, Soong Ju Oh^b, Byung-Su Kim^{a,*}, and Ji-Hyuk Choi^{a,*}

^aResources & Materials Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea

^bDepartment of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea

^cSpace Resources Exploration and Utilization Center, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea

* Corresponding author

E-mail addresses: <u>bskim@kigam.re.kr</u>, jhcho@kigam.re.kr

Figure S1. (a) The appearance of GODs with different wt% of GO content using ethanol as a solvent, and (b) when they were pushed with a glass rod.

Figure S2. (a) Formation of GODs using different polar solvents, and (b) their deformation response when pressed with a glass rod. (c-f) XRD patterns of GODs prepared with different polar solvents under varying exposure times in ambient conditions.

Figure S3. (a) Images of GOD formation (30 wt% of GO content) using polar solvents (water and ethanol) and non-polar solvents (hexane and toluene), and (b) fabricated films of the GODs.

Figure S4. Photos showing the amount of GO foams for a large-scale production of GOD composites, and when they were fabricated into CNT@GOD, V_2O_5 @GOD, and TiO₂@GOD at a large-scale.

Figure S5. Relative resistance changes according to bending radii (2.5, 5, 7, 10 and 15 mm) for RGOD films with thicknesses of 50 μ m and 100 μ m

Figure S6. The XPS spectra of RuO₂@RGOD of (a) C 1s and R 3d, (b) O 1s, and (c) Ru 3p.

Figure S7. The cross-sectional SEM images of RGOD composites mixed with (a) V_2O_5 , (b) TiO₂, (c) Fe₂O₃, (d) RuO₂, (e) Si nanoparticles, and (f) CNTs. (scale bar: 500 nm)

Figure S8. The SEM surface images and their EDS mapping images of the RGOD composites mixed with (a) V_2O_5 , (b) TiO₂, (c) Fe₂O₃, and (d) Si nanoparticles. (scale bar: 2 μ m)

Figure S9. (a-b) Photos taken before and after mixing ternary GOD composites $(TiO_2@V_2O_5@GOD)$ depending on processing time using an acoustic mixer. (c-d) SEM surface images and corresponding EDS mapping images of the ternary GOD composites fabricated by DD and DP mixing. (scale bar: 2 μ m).

Figure S10. The TGA curves of GOD, RGOD, and RGOD composites including CNT@RGOD, RuO₂@CNT@RGOD, and Fe₂O₃@CNT@RGOD.

Figure S11. Cyclic load–displacement curves under a constant load of 3 mN for RGOD composites of (a) $RuO_2@CNT@RGOD$ and (b) $Fe_2O_3@CNT@RGOD$.

Figure S12. (a) BET adsorption-desorption curves and (b) pore volume distributions of RGOD, $RuO_2@RGOD$ and $RuO_2@CNT@RGOD$ films.

Figure S13. GCD curves of RuO₂@CNT@RGOD film at different current densities.

Figure S14. Comparison of EMI shielding performance of $Fe_2O_3@CNT@RGOD$ as a function of thickness, along with various polymer-free graphene composite materials and representative commercial shielding materials.

Figure S15. (a) Cross-sectional SEM image of multi-layered RGOD/Fe₂O₃@RGOD/RGOD, (b) along with its EDS mapping image and the thickness of each layer. (Inset) (Scale bar: 100 μ m)

	Elastic modulus (GPa)	Hardness (MPa)	Vickers hardness (HV)
GOD	2.42 ± 0.43	88 ± 13	8.12 ± 1.2
Fe ₂ O ₃ @CNT@GOD	2.76 ± 0.40	149 ± 20	13.8 ± 1.8
RuO2@CNT@GOD	3.40 ± 0.19	178 ± 14	16.5 ± 1.3
Fe ₂ O ₃ @CNT@RGOD	14.3 ± 1.0	374 ± 39	34.6 ± 3.5
RuO2@CNT@RGOD	15.3 ± 1.3	488 ± 41	41.5 ± 3.8

 Table S1. Mechanical properties of GOD, GOD composites and RGOD composites.

Table S2. Comparison of electrochemical performance of $RuO_2@CNT@RGOD$ electrode with other high-density carbon materials including composite structures reported in the literature using a two-electrode system.

Materials	Density (g cm ⁻³)	C _v (F cm ⁻³) @ scan rate	E _v (Wh/L)	P _v (W/L)	Cycling stability	Electrolyte	Ref.
NCGH-40	1.35	351.8 @ 0.3 A/g 282.7 @ 10 A/g	12.2 8.4	101 3126.3	110.4% @ 10 A/g (1,000 cycles)	6M KOH	[1]
F-RGO-60	1.47	262.5 @ 0.1 A/g 200.2 @ 10 A/g	9.14 7.28	36.7 631	91.5% @ 5 A/g (6,000 cycles)	6M KOH	[2]
POGH	0.94	241.1 @ 0.5 A/g 221.3 @ 10 A/g	8.3 6.7	116.9 2,193	100.7% @ 10 A/g (10,000 cycles)	6M KOH	[3]
NFGH5	1.17	309.2 @ 0.3 A/g 231.9 @ 10 A/g	10.7 7.1	87.6 2,748	93.8% @ 10 A/g (10,000 cycles)	6M KOH	[4]
HOGH-140	1.16	377.8 @ 0.3 A/g 200.3 @ 10 A/g	13.1 9.7	86.9 2,777	99% @ 10 A/g (10,000 cycles)	6M KOH	[5]
SC-PPC	0.70	278.6 @ 0.5 A/g 175 @ 20 A/g	8.05 4.9	109.7 3310.3	96% at 10 A/g (10,000 cycles)	4M H ₂ SO ₄	[6]
MPCN-800	0.85	318 @ 0.5 A/g 248 @ 20 A/g	8.67 6.97	110.5 4,505	96% at 10 A/g (30,000 cycles)	6M KOH	[7]
PCS	0.75	268 @ 1 A/g 218 @ 20 A/g	8.8 7.4	187.5 9,375	100% at 20 A/g (10,000 cycles)	6M KOH	[8]
PANi-NT- graphene	1.19	369.5 @ 1 A/g	8.21	2896.9	97.6% at 20 A/g (5,000 cycles)	1M H ₂ SO ₄	[9]
NGCH-150	1.35	404.6 @ 0.3 A/g	14.0	~3250	93.8% @ 10 A/g (10,000 cycles)	6M KOH	[10]
prGO-CNT	1.50	250 @ 1 A/g 200 @ 10 A/g	8.2	4200	97% @ 10 A/g (5,000 cycles)	6M KOH	[11]
This work	1.63	285 @ 0.5 A/g 206 @ 20 A/g	9.90 7.15	204 8,119	93 % @ 10 A/g (10,000 cycles)	6M KOH	

Table S3. Comparison of EMI SE performance of various polymer-free graphene composite materials fabricated using different methods, including process temperature and time, along with representative commercial shielding materials.

Materials	Thickness (mm)	Density (g cm ⁻³)	Conductivity (S cm ⁻¹)	EMI SE (dB) @ Frequency (GHz)	Mixing process (Taken temp. and time)	Post-processing (Taken temp. and time)	Ref.
D-LIG/Ni	0.327	-	43.9	79 @ 8.2-12.4	Electrochemical deposition (RT, 30 min)	-	[12]
CNT-MLGEP	1.6	0.0089	1.18	47.5 @ 8.2-12.4	PECVD (800 °C, < 2 h)	Annealing (600 °C, 3h)	[13]
CNT-gGF	0.24	-	1.3*104	55 @ 5-22	Ball-milling (RT, 12 h)	Graphitization (2800 °C, 2h)	[14]
Graphene/CNTs	2	0.985	1819.17	75 @ 12.4-18	Ultra-sonication (RT, 50 min)	Graphitization (2800 °C, 2h)	[15]
Fe ₃ O ₄ /GN	0.20	0.78	50	24 @ 8.2-12.4	Hydrothermal reaction (180 °C, 10 h)	-	[16]
NiFe ₂ O ₄ /rGO	2	-	0.7	38.2 @ 10.8	Hydrothermal reaction (200 °C, 12 h)	-	[17]
Fe ₃ O ₄ @MWCNTs/RGO	0.6	0.108	5.076	45.9 @ 8.2-12.4	Stirring and dry (50 °C, 12h)	- Hydrothermal reaction (100 °C, 1h)	[18]
PGFs-xPFO	2.18	-		64.36 @ 2-18	MLD (150 °C, < 2 min)	Annealing (380 °C, 1h)	[19]
Graphene/Ag	0.8	-	0.032	28 @ 8.2-12.4	Stirring and heating (100 °C, 4.5h)	Thermal drying (50 °C, 24h)	[20]
f-Fe ₃ O ₄ -VCNTs@rGO	1	-	-	25 @ 8.2-12.4	Microwave method (RT, <5 min)	-	[21]
MRGO-MX Foam	15	0.0038	0.81	35 @ 8.2-12.4	Stirring and sonication (RT, ~30 min)	Thermal drying (90 °C, 12h)	[22]
Copper Foil	0.01	8.97	8.0*105	70 @ 8.2-12.4	-		[23]
Aluminum Foil	0.05	2.7	3.5*10 ⁵	62.5 @ 8.2-12.4	-		[24]

This work	0.5	1.12	16.1	81.3 @ 8.2-12.4	Directly physical mixing (RT, 3-5 min)	Annealing (250 ℃, 1h)	
Carbon fabric	0.109	1.1	1351.35	47.11 @ 8.2-12.4	-		[24]
Silver foil	0.01	10.49	6.0*10 ⁵	58.49 @ 8.2-12.4	-		[24]

References

- Y. Zhang, K. Liu, X. Liu, W. Ma, S. Li, Q. Zhou, H. Pan and S. Fan, *Energy and Fuels*, 2022, 36, 8506–8514.
- C. Huang, A. Hu, Y. Li, H. Zhou, Y. Xu, Y. Zhang, S. Zhou, Q. Tang, C. Chen and X. Chen, *Nanoscale*, 2019, 11, 16515–16522.
- 3 Y. Zhang, S. Fan, S. Li, Y. Song and G. Wen, J. Mater. Sci., 2020, 55, 12214–12231.
- J. Chen, Q. Zhou, W. Ma, C. Wang, S. Fan and Y. Zhang, *J. Mater. Sci. Mater. Electron.*, 2024, 35, 1–13.
- 5 S. Fan, L. Wei, X. Liu, W. Ma, C. Lou, J. Wang and Y. Zhang, *Int. J. Hydrogen Energy*, 2021,
 46, 39969–39982.
- H. Gao, D. Zhang, H. Zhou, J. Wu, G. Xu, Z. Huang, M. Liu, J. Yang and D. Chen, *Appl. Surf. Sci.*, 2020, **534**, 147613.
- X. Che, J. Yang, S. Liu, M. Wang, S. He and J. Qiu, *Ind. Eng. Chem. Res.*, 2022, 61, 8908– 8917.
- S. Feng, Z. Liu, Q. Yu, Z. Zhuang, Q. Chen, S. Fu, L. Zhou and L. Mai, ACS Appl. Mater.
 Interfaces, 2019, 11, 4011–4016.
- 9 M. Moussa, M. F. El-Kady, S. Abdel-Azeim, R. B. Kaner, P. Majewski and J. Ma, Compos. Sci. Technol., 2018, 160, 50–59.
- Y. Zhang, L. Wei, X. Liu, W. Ma, C. Lou, J. Wang and S. Fan, *Int. J. Hydrogen Energy*, 2022, 47, 33827–33838.
- N. Díez, C. Botas, R. Mysyk, E. Goikolea, T. Rojo and D. Carriazo, *J. Mater. Chem. A*, 2018,
 6, 3667–3673.

- 12 J. Yin, J. Zhang, S. Zhang, C. Liu, X. Yu, L. Chen, Y. Song, S. Han, M. Xi, C. Zhang, N. Li and Z. Wang, *Chem. Eng. J.*, 2021, **421**, 129763.
- 13 Q. Song, F. Ye, X. Yin, W. Li, H. Li, Y. Liu, K. Li, K. Xie, X. Li, Q. Fu, L. Cheng, L. Zhang and B. Wei, *Adv. Mater.*, 2017, **29**, 1–8.
- 14 Y. Yu, F. Yang, X. Liu, D. Lu, T. Liu, Y. Li and Z. Wu, *Carbon N. Y.*, 2024, 228, 119420.
- 15 H. Jia, Q. Q. Kong, X. Yang, L. J. Xie, G. H. Sun, L. L. Liang, J. P. Chen, D. Liu, Q. G. Guo and C. M. Chen, *Carbon N. Y.*, 2021, **171**, 329–340.
- W. L. Song, X. T. Guan, L. Z. Fan, W. Q. Cao, C. Y. Wang, Q. L. Zhao and M. S. Cao, J.
 Mater. Chem. A, 2015, 3, 2097–2107.
- A. Kumar, A. K. Singh, M. Tomar, V. Gupta, P. Kumar and K. Singh, *Ceram. Int.*, 2020, 46, 15473–15481.
- J. Zhou, H. Tao, L. Xia, H. Zhao, Y. Wang, Y. Zhan and B. Yuan, *Compos. Commun.*, 2022, 32, 101181.
- 19 S. Zhao, J. Yang, F. Duan, B. Zhang, Y. Liu, B. Zhang, C. Chen and Y. Qin, J. Colloid Interface Sci., 2021, 598, 45–55.
- 20 P. K. Sahoo, R. Aepuru, H. S. Panda and D. Bahadur, Sci. Rep., 2015, 5, 1–12.
- R. Kumar, A. V. Alaferdov, R. K. Singh, A. K. Singh, J. Shah, R. K. Kotnala, K. Singh, Y.
 Suda and S. A. Moshkalev, *Compos. Part B Eng.*, 2019, 168, 66–76.
- 22 Q. Chen, K. Zhang, L. Huang, Y. Li and Y. Yuan, *Adv. Eng. Mater.*, 2022, 24, 1–12.
- 23 F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo and Y. Gogotsi, *Science (80-.).*, 2016, **353**, 1137–1140.
- 24 H. Ji, R. Zhao, N. Zhang, C. Jin, X. Lu and C. Wang, NPG Asia Mater., 2018, 10, 749–760.