Supporting Information

Optimizing Pore Structure in Silicon-Carbon Anodes: The Impact of

Micropore and Mesopore Ratios on Electrochemical Performance

Xiao Mu^a, Xintong Xu^b, Haibang Xu^b, Tao Huang^{a*}, Aishui Yu^{a, b*}

^{a.} Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai 200438, China

^{b.} Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China $SiH_4 \rightarrow Si + 2H_2$ (Eq. S1) $C_2H_2 \rightarrow 2C + H_2$ (Eq. S2)

Micropore Fraction (%) = $\frac{S_{t-plot}}{S_{BET}}$ (Eq. S3)

 $Weight(Si) \% = \frac{W_f}{W_i} \times \frac{28.09}{60.08} \times 100 \%$ (Eq. S4)

Derivation of the Silicon Content Calculation Formula

During TGA in an oxygen atmosphere, assuming that carbon is completely oxidized and lost as CO_2 , whereas elemental silicon is oxidized to form SiO_2 .

The molar masses are:

Si: 28.09 g/mol

SiO₂: 60.08 g/mol

Let \mathbf{W}_i be the initial weight (200 °C) and \mathbf{W}_f be the final weight (1300 °C) after oxidation. Assuming the mass fraction of silicon is \mathbf{x} , after oxidation, silicon contributes:

$$W_f = x \times W_i \times \frac{60.08}{28.09}$$

Thus, the silicon mass fraction is calculated as:

$$\mathbf{x} = \frac{\mathbf{W}_{\mathrm{f}}}{\mathbf{W}_{\mathrm{i}}} \times \frac{28.09}{60.08}$$

Expressed as a percentage, the silicon content is:

$$Weight(Si) \% = \frac{W_f}{W_i} \times \frac{28.09}{60.08} \times 100 \%$$
 (Eq. S4)

Fig. S1. Nitrogen adsorption-desorption isotherms of coconut carbon.

Fig. S2. SEM images of (a) $AC_{0.44}$ and (b) $AC_{0.29}$.

Fig. S3. (a, b, c) XPS high-resolution C 1s and (d, e, f) O 1s spectra of $AC_{0.68}$, $AC_{0.44}$ and $AC_{0.29}$.

Fig. S4. EDS mapping images of C in Si/AC_{0.68}, Si/AC_{0.44} and Si/AC_{0.29} and EDS mapping images of Si in Si/AC_{0.68}, Si/AC_{0.44} and Si/AC_{0.29}

Fig. S5. TEM images of (a) Si/AC $_{0.44}$ and (b) Si/AC $_{0.29}$.

Fig. S6. Nitrogen adsorption-desorption isotherms of (a) $AC_{0.68}$, (b) $AC_{0.44}$ and (b) $AC_{0.29}$.

Fig. S7. Pore size distribution of (a) $AC_{0.44}$ and (b) $AC_{0.29}$.

Fig. S8. Nitrogen adsorption-desorption isotherms of the (a) Si/AC_{0.68}, (b) Si/AC_{0.44} and (b) Si/AC_{0.29}.

Fig. S9. (a, b)Micropores distribution of Si/AC_{0.44} and Si/AC_{0.29} calculated by the Horvath-Kawazoe model. (c, d) Mesopores distribution of Si/AC_{0.44} and Si/AC_{0.29} calculated by the BJH model.

Fig. S10. (a, b) Carbon (C) and Silicon (Si) TOF-SIMS chemical mapping in Si/AC_{0.44}. (c, d) TOF-SIMS 3D reconstruction for the sputtered volume of carbon (C) and Silicon (Si) in Si/AC_{0.44}. (e, f) Carbon (C) and Silicon (Si) TOF-SIMS chemical mapping in Si/AC_{0.29}. (g, h) TOF-SIMS 3D reconstruction for the sputtered volume of carbon (C) and Silicon (Si) in Si/AC_{0.29}.

Fig. S11. (a, b) Depth profiles of Carbon (C) and Silicon (Si) signals in Si/AC $_{0.44}$ and Si/AC $_{0.29}$.

Fig. S12. (a) Post-cycling TEM images and EDS mapping images of (b) C and (c) Si in Si/AC_{0.68}. (d) Post-cycling TEM images and EDS mapping images of (e) C and (f) Si in Si/AC_{0.44}. (g) Post-cycling TEM images and EDS mapping images of (g) C and (h) Si in Si/AC_{0.29}.

Fig. S13. Equivalent circuit model for EIS data analysis.

Fig. S14. Full-cell cycling performance at 0.3 C rate.

Samples	BET Surface	t-plot	BJH Desorption	Single Point	S _{Micropore} /S _{BET} (%)
	Area (m² g-1)	Micropore	Cumulative Surface	Desorption Total Pore	
		Area (m² g-1)	Area (m ² g ⁻¹)	Volume (cm ³ g ⁻¹)	
AC _{0.68}	1727.6	1179.8	485.1	0.84	68.3
AC _{0.44}	1771.1	869.3	769.1	0.89	44.1
AC _{0.29}	1708.8	494.1	1018.4	0.91	28.9

Table S1. The BET surface area, t-plot micropore area, BJH desorption cumulative surface area, single point desorption total pore volume and the micropore surface area to BET surface area ratios of the $AC_{0.68}$, $AC_{0.44}$ and $AC_{0.29}$.

•

Samples	0	Ν	Н	
AC _{0.68}	7.04405	0.38551	0.41581	
AC _{0.44}	10.79259	0.31964	0.64183	
AC _{0.29}	7.61062	0.38599	0.67108	

Table S2. O, N and H content of the $AC_{0.68}$, $AC_{0.44}$ and $AC_{0.29}$.

			on coponding chemi	cui bollus.
Samples	C 1s	C 1s	0 1s	O 1s
	С-С/С-Н	C-O	C-O	Adsorbed H ₂ O
AC _{0.68}	284.83 eV	285.72 eV	532.49 eV	534.3 eV
AC _{0.44}	284.73 eV	285.62 eV	532.49 eV	534.5 eV
AC _{0.29}	284.78 eV	285.83 eV	532.53 eV	534.28 eV

Table S3. Peak positions and their corresponding chemical bonds.

Samples	BET Surface Area (m ²	t-plot Micropore	BJH Desorption Cumulative	Single Point Desorption
	g-1)	Area (m ² g ⁻¹)	Surface Area (m ² g ⁻¹)	Total Pore Volume
				(cm³ g ⁻¹)
Si/AC _{0.68}	12.4787	7.3677	6.0826	0.018124
Si/AC _{0.44}	12.3770	7.9382	5.4700	0.016292
Si/AC _{0.29}	13.1246	5.9135	8.9514	0.018506

Table S4. The BET surface area, t-plot micropore area, BJH desorption cumulative surface area and single point desorption total pore volume of the Si/AC_{0.68}, Si/AC_{0.44} and Si/AC_{0.29}.

Table S5. Slope and residual sum of squares of the fitted curves derived from the TOF-
SIMS depth profile data in Si/AC _{0.68} , Si/AC _{0.44} and Si/AC _{0.29} .

Samples	Slope	Residual Sum of Squares
Si/AC _{0.68}	9.70751±4.25934	321294.06324
Si/AC _{0.44}	-15.92716±6.72115	8000028.25635
Si/AC _{0.29}	53.18295±6.88162	838686.18069