Supplementary Material

4D Printing of Programmable Liquid-Vapor Phase Change Composites for

Multi-Responsive Flexible Actuators

Hongru Zheng^{a,c,1}, Mingquan Fang^{b,c,1}, Fei Long^c, Huilan Jing^{b,c}, Bing Wang^{b,c}, Xunye Fan^c, Jianjun Guo^c, Yuchuan Cheng^{b,c*}, Aihua Sun^{c*}

a. School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China

b. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

c. Laboratory of Atomic-scale and Micro & Nano Manufacturing, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China

* Corresponding authors.

E-mail addresses: yccheng@nimte.ac.cn

¹These authors contributed equally to this work.

List of Contents

Figure S1. Fabrication process of the of magnetocaloric responsive liquid-vapor phase transition elastomers inks.

Figure S2. TEM image of Fe₃O₄ nanoparticles.

Figure S3. Elemental analysis of Fe₃O₄ dispersed in silicone rubber.

Figure S4. Ethanol micro-cavities inside elastomers.

Figure S5. Magnetic hysteresis loop diagrams of Fe₃O₄.

Figure S6. Magnetic hysteresis loop diagrams of composite materials at 25 °C and 100 °C.

Figure S7. Viscosity with Fe₃O₄ content ranging from 20 % to 42.5 %.

Figure S8. Modulus with Fe_3O_4 content ranging from 20 % to 42.5 %.

Figure S9. Mechanical properties of I-shaped specimens with different SiO₂ contents.

Figure S10. Photographs of liquid-gas phase transition actuators.

Movie S1. Magneto-thermally responsive gripper picks up a toy mushroom.

Movie S2. A 1.45 g magneto-thermally responsive dome can bear a 15.8 g beaker.

Movie S3. Programmable magneto-thermally responsive switches control light bulbs.

Movie S4. Combining static and dynamic magnetic field to control the targeted delivery of small ball in a S-shaped pine.

Movie S5. Combining static and dynamic magnetic field to control the targeted delivery of small ball within a sealed maze.

Figure S1. Fabrication process of the of magnetocaloric responsive liquid-vapor

phase transition elastomers inks.

Figure S2. TEM image of Fe₃O₄ nanoparticles

Figure S3. Elemental analysis of Fe₃O₄ dispersed in silicone rubber.

Figure S4 Ethanol micro-cavities inside elastomers

Figure S5. Magnetic hysteresis loop diagrams of Fe₃O₄.

Figure S6. Magnetic hysteresis loop diagrams of composite materials at 25 $^{\circ}$ C and 100 $^{\circ}$ C.

Figure S7. Viscosity with Fe₃O₄ content ranging from 20 % to 42.5 %.

Figure S8. Modulus with Fe_3O_4 content ranging from 20 % to 42.5 %.

Figure S9. Mechanical properties of I-shaped specimens with different SiO_2 contents. When the SiO_2 content exceeds 6 wt%, the SiO_2 powder cannot fully blend with the 00-50.

Figure S10. Photographs of liquid-gas phase transition actuators.

The ratio of the active layer to the passive layer in figure (d), (e), (f) are 1:1, 2:1 and 5:1 respectively.