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Material characterizations

Transmission electron microscopy (TEM) images, high-resolution TEM (HRTEM)
images, high-angle annular dark-field scanning transmission electron microscopy
(HAADF-STEM) and elemental mapping were acquired by Lorenz Transmission
Electron Microscope (Talos F200X). Scanning electron microscopy (SEM) images
were recorded by Quanta 250FEG equipment. X-ray diffraction (XRD) patterns were
obtained from a Bruker D2 PHASER using Cu/Ka radiation (A =1.5418A) at 40 kV and
30 mA. X-ray photoelectron spectroscopy (XPS) spectra were obtained using a Thermo
Fisher ESCALAB spectrometer. The deposited thickness of amorphous ZrO, was
obtained by ellipsometry (SE401adv-C, SENTECH, Germany). The hydrogen storage
properties of MgH,-based materials were tested using a homemade HPSA-auto
apparatus.! Temperature programmed desorption (TPD) was tested from 100°C to
400°C at arate of 3 °C/min. The isothermal desorption kinetic properties of the samples
were tested at different temperatures (225, 250, 275, and 300°C) under starting
hydrogen pressures below 0.05 bar. Similarly, the isothermal hydrogen absorption
kinetic properties of the samples were tested at different temperatures (20, 50, 100, and
150°C) under 30 bar H,. The isothermal dehydrogenation (0.05 bar H,) and
rehydrogenation (30 bar H,) tests of the samples were performed repeatedly at 275°C

for the cycling test.



Figure S1 SEM images of commercial MgH, at different scales.

Figure S2 HAADF-STEM images of MgH,@20nmZrO, with corresponding EDS

elemental mapping analysis.



Figure S3 SEM images of MgH,-20nmZrO, at different scales.
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Figure S4  Particle size distribution of (a) MgH,-10nmZrO,, (b) pristine MgH,-
ZrO,/FL-Ti;C,, and (c) MgH,-ZrO,/FL-Ti;C, after 50 cycles.



Figure S5 SEM images of untreated Ti;C, at different scales.
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Figure S6 XRD patterns of Ti;C, (blue) and FL-Ti;C, (orange).
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Figure S7 XRD patterns of (a) Commercial MgH,, MgH,@ZrO, and (b) MgH,-ZrO,.
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Figure S8 The isothermal dehydrogenation curve of MgH,-ZrO,/FL-Ti;C, at 225°C.
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Figure S9 (a)The rehydrogenation cycle curves and (b) the comparison of the 1 and

104, rehydrogenation properties of MgH,-ZrO,/FL-Ti;C, at 100°C.
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Figure S10 Time dependence of R2 modeling equation g(a) for MgH,-ZrO,/FL-Ti;C,

at different temperatures.



Figure S11 SEM images of MgH,-ZrO,/FL-Ti;C, after (a, b) dehydrogenation, (c, d)

rehydrogenation, and (e, f) 50 cycles at different scales.
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Figure S12 HAADF-STEM image of MgH,-ZrO,/FL-Ti;C, after dehydrogenation

reaction with corresponding EDS elemental mapping analysis.

Figure S13 HAADF-STEM image of MgH,-ZrO,/FL-Ti;C, after re-hydrogenation

reaction with corresponding EDS elemental mapping analysis.
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Figure S14 XRD patterns of the as-produced (yellow), dehydrogenated (blue), and re-
hydrogenated (green) MgH,-ZrO,/FL-Ti;C,.
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Figure S15 XRD patterns of the as-produced (yellow), dehydrogenated (blue), and
rehydrogenated (green) MgH,-ZrO,/FL-Ti;C, between 40° and 54°.
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Figure S16 High-resolution Zr 3d spectra of the as-produced, dehydrogenated, and
rehydrogenated MgH,-ZrO,/FL-Ti;C, .
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Figure S17 High-resolution Ti 2p spectra of the FL-Ti;C,.
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Figure S18 High-resolution O 1s spectrum of the as-produced, dehydrogenated, and
rehydrogenated MgH,-ZrO,/FL-Ti;C,.
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Figure S19 The proportion of peak area integrals corresponding to different Ti valence

states of as-produced, dehydrogenated, and rehydrogenated MgH,-ZrO,/FL-Ti;C,.
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Figure S20 (a-d) HAADF-STEM image of MgH,-ZrO,/FL-Ti;C, before in-situ
pyrolysis characterization with corresponding EDS elemental mapping analysis. (e)

HRTEM image obtained by zooming in on Area 1 of Figure S20a.

Figure S21 In-situ pyrolysis HRTEM image of MgH,-ZrO,/FL-Ti;C, at 500°C.
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Table S1 The detailed proportion of peak area integrals for different Ti valence states

of as-produced, dehydrogenated, and rehydrogenated MgH,-ZrO,/FL-Ti;C,.

Sample Tivalence  Normalized Proportion of area

area integral

Ti® 0.94 28.2%
Ti-C 0.37 11.1%
dehydrogenated Ti?* 0.34 10.2%
Ti* 1 30.0 %
Ti* 0.68 20.4%
Tie 1 37.0 %
Ti-C 0.28 10.4%
Rehydrogenated Ti* 0.22 8.1%
Ti* 0.82 30.4%
Ti* 0.38 14.1%
Ti® 1 35.2%
Ti-C 0.23 8.1%
as-produced Ti2* 0.32 11.3%
Ti* 0.89 31.3%
Ti* 0.4 14.1%
Reference:
1. C. Wu, Y. Wang, Y. Liu, W. Ding and C. Sun, Catalysis Today, 2018, 318, 113-118.
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