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Material characterizations

Transmission electron microscopy (TEM) images, high-resolution TEM (HRTEM) 

images, high-angle annular dark-field scanning transmission electron microscopy 

(HAADF-STEM) and elemental mapping were acquired by Lorenz Transmission 

Electron Microscope (Talos F200X). Scanning electron microscopy (SEM) images 

were recorded by Quanta 250FEG equipment. X-ray diffraction (XRD) patterns were 

obtained from a Bruker D2 PHASER using Cu/Kα radiation (λ =1.5418Å) at 40 kV and 

30 mA. X-ray photoelectron spectroscopy (XPS) spectra were obtained using a Thermo 

Fisher ESCALAB spectrometer. The deposited thickness of amorphous ZrO2 was 

obtained by ellipsometry (SE401adv-C, SENTECH, Germany). The hydrogen storage 

properties of MgH2-based materials were tested using a homemade HPSA-auto 

apparatus.1 Temperature programmed desorption (TPD) was tested from 100°C to 

400°C at a rate of 3 °C/min. The isothermal desorption kinetic properties of the samples 

were tested at different temperatures (225, 250, 275, and 300°C) under starting 

hydrogen pressures below 0.05 bar. Similarly, the isothermal hydrogen absorption 

kinetic properties of the samples were tested at different temperatures (20, 50, 100, and 

150°C) under 30 bar H2. The isothermal dehydrogenation (0.05 bar H2) and 

rehydrogenation (30 bar H2) tests of the samples were performed repeatedly at 275°C 

for the cycling test.
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Figure S1  SEM images of commercial MgH2 at different scales.

Figure S2  HAADF-STEM images of MgH2@20nmZrO2 with corresponding EDS 

elemental mapping analysis.
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Figure S3  SEM images of MgH2-20nmZrO2 at different scales.

Figure S4  Particle size distribution of (a) MgH2-10nmZrO2, (b) pristine MgH2-

ZrO2/FL-Ti3C2, and (c) MgH2-ZrO2/FL-Ti3C2 after 50 cycles.
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Figure S5  SEM images of untreated Ti3C2 at different scales.

Figure S6  XRD patterns of Ti3C2 (blue) and FL-Ti3C2 (orange).

 



6

Figure S7  XRD patterns of (a) Commercial MgH2, MgH2@ZrO2 and (b) MgH2-ZrO2.

Figure S8  The isothermal dehydrogenation curve of MgH2-ZrO2/FL-Ti3C2 at 225℃.
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Figure S9  (a)The rehydrogenation cycle curves and (b) the comparison of the 1st and 

10th rehydrogenation properties of MgH2-ZrO2/FL-Ti3C2 at 100℃.

Figure S10  Time dependence of R2 modeling equation g(α) for MgH2-ZrO2/FL-Ti3C2 

at different temperatures.
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Figure S11 SEM images of MgH2-ZrO2/FL-Ti3C2 after (a, b) dehydrogenation, (c, d) 

rehydrogenation, and (e, f) 50 cycles at different scales.
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Figure S12  HAADF-STEM image of MgH2-ZrO2/FL-Ti3C2 after dehydrogenation 

reaction with corresponding EDS elemental mapping analysis.

Figure S13  HAADF-STEM image of MgH2-ZrO2/FL-Ti3C2 after re-hydrogenation 

reaction with corresponding EDS elemental mapping analysis.
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Figure S14  XRD patterns of the as-produced (yellow), dehydrogenated (blue), and re-

hydrogenated (green) MgH2-ZrO2/FL-Ti3C2.

Figure S15  XRD patterns of the as-produced (yellow), dehydrogenated (blue), and 

rehydrogenated (green) MgH2-ZrO2/FL-Ti3C2 between 40° and 54°.
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Figure S16  High-resolution Zr 3d spectra of the as-produced, dehydrogenated, and 

rehydrogenated MgH2-ZrO2/FL-Ti3C2 .

Figure S17  High-resolution Ti 2p spectra of the FL-Ti3C2.
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Figure S18  High-resolution O 1s spectrum of the as-produced, dehydrogenated, and 

rehydrogenated MgH2-ZrO2/FL-Ti3C2.

Figure S19  The proportion of peak area integrals corresponding to different Ti valence 

states of as-produced, dehydrogenated, and rehydrogenated MgH2-ZrO2/FL-Ti3C2.
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Figure S20  (a-d) HAADF-STEM image of MgH2-ZrO2/FL-Ti3C2 before in-situ 

pyrolysis characterization with corresponding EDS elemental mapping analysis. (e) 

HRTEM image obtained by zooming in on Area 1 of Figure S20a.

Figure S21  In-situ pyrolysis HRTEM image of MgH2-ZrO2/FL-Ti3C2 at 500℃.
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Table S1 The detailed proportion of peak area integrals for different Ti valence states 

of as-produced, dehydrogenated, and rehydrogenated MgH2-ZrO2/FL-Ti3C2.

Sample Ti valence Normalized 

area integral

Proportion of area

Ti0 0.94 28.2%

Ti-C 0.37 11.1%

Ti2+ 0.34 10.2%

Ti3+ 1 30.0 %

dehydrogenated

Ti4+ 0.68 20.4%

Ti0 1 37.0 %

Ti-C 0.28 10.4%

Ti2+ 0.22 8.1%

Ti3+ 0.82 30.4%

Rehydrogenated

Ti4+ 0.38 14.1%

Ti0 1 35.2%

Ti-C 0.23 8.1%

Ti2+ 0.32 11.3%

Ti3+ 0.89 31.3%

as-produced

Ti4+ 0.4 14.1%
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