Supporting Information

Ga doping Enhances Oxygen Evolution Reaction Performance and

stability of NiFe layered double hydroxides

Zhenghang Tian, Yuanyi Liu, Zhiyuan Chen, Zhi Wan, Jizhou Yang, Peilin Zuo, Mingxin Ren, Peng Hu, Feng Teng, Haibo Fan^{*} School of Physics, Northwest University, Xi'an 710127, China *Corresponding author (E-mail: <u>hbfan@nwu.edu.cn)</u>

The experimental part: Prior to testing, calibration of the Hg/HgO electrode was first carried out using a three-electrode system in which a platinum sheet was used as the working electrode and counter electrode. CV scans were performed in 1 M KOH solution in the range of -0.935 to -0.915 V at a scan rate of 1 mV s -1. The average of the potentials where the current was equal to zero was used as the potential of the reversible hydrogen electrode (relative to Hg/HgO). Therefore, all potentials reported in our paper were calibrated to the reversible hydrogen electrode (RHE) by equation (2).

Supplementary Figures

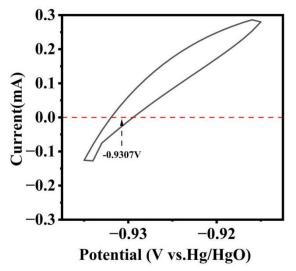


Fig. S1. Hg/HgO reference electrode calibration curve in 1M KOH.

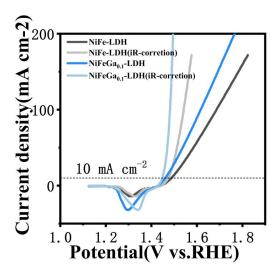


Fig. S2. The LSV curves before and after IR compensation are compared.

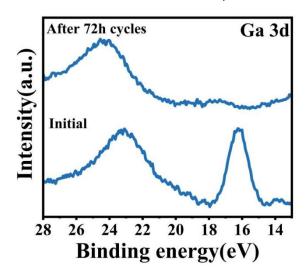


Fig. S3. NiFeGa_{0.1}-LDH@NF XPS Ga 3d orbit curve before and after the cycle

Supplementary Tables

Table. S1. NiFeGa0.1-LDH@NF Electrochemical catalytic performance A comparative study of similar types of electrocatalysts recently reported

Catalysts	J (mA cm ⁻²)	η (mV)	Stability (h)	Electrolyte	Ref.
NiFe-LDH Sn _{0.015} (M)	10	250	50(1.5V)	1M KOH	1
NiFe-LDHS	10	224	32(50mA cm ⁻²)	1M KOH	2
Ce@NiFe-LDH	10	220	60(1.48V)	1M KOH	3
NiFeMo _{0.1} -LDH	10	227	24(1.54V)	1M KOH	4
Mn ²⁺ -doped NiFe- LDH	10	190	40(50mA cm ⁻²)	1M KOH	5
NiFelr-LDH	10	246	12(10mA cm ⁻²)	1M KOH	6
Co@NiFe-LDH	10	253	/	1M KOH	7
NiFeGa _{0.1} -LDH	10	224	72(50mA cm ⁻²)	1M KOH	This work

References

- Bera, K. *et al.* Accelerating the Electrocatalytic Performance of NiFe–LDH via Sn Doping toward the Water Oxidation Reaction under Alkaline Condition. *Inorg. Chem.* 61, 16895– 16904 (2022).
- Shi, D. *et al.* Oxygen vacancies meet partial S substitution: an effective strategy to achieve obvious synergistic effects and adjustable electrochemical behavior in NiFe-LDH for enhanced OER and capacitive performance. *Inorg. Chem. Front.* 10, 5391–5405 (2023).
- Nagappan, S. *et al.* Electronically Modified Ce³⁺ Ion Doped 2D NiFe-LDH Nanosheets over a 1D Microfiber: A High-Performance Electrocatalyst for Overall Water Splitting. *ACS Appl. Energy Mater.* 5, 12768–12781 (2022).
- Lu, Z. et al. In Situ Synthesis of Ternary Ni-Fe-Mo Nanosheet Arrays for OER in Water Electrolysis. *Molecules* 30, 177 (2025).
- Zhou, D. *et al.* Activating basal plane in NiFe layered double hydroxide by Mn²⁺ doping for efficient and durable oxygen evolution reaction. *Nanoscale Horiz.* 3, 532–537 (2018).
- 6. Jung, S. *et al.* Exploring Ir-doped NiFe-LDH nanosheets *via* a pulsed laser for oxygen evolution kinetics: *in situ* Raman and DFT insights. *J. Mater. Chem. A* **12**, 8694–8706 (2024).
- Liu, S. *et al.* Probing the Co role in promoting the OER and Zn-air battery performance of NiFe-LDH: a combined experimental and theoretical study. *J. Mater. Chem. A* 10, 5244–5254 (2022).