Supporting Information

## Suppression of extensive ice formation in hydrogel electrolytes

## enabling low-temperature aqueous Zn batteries

Jialu Bi<sup>a</sup>, Fenglin Zhang<sup>a</sup>, Xuesong Zhao<sup>a</sup>, Ziyang Cai<sup>a</sup>, and Huilin Pan<sup>a\*</sup>

<sup>1</sup>Department of Chemistry, Zhejiang University, Hangzhou 310027, China

\*Corresponding author: Huilin Pan (panhuilin@zju.edu.cn)

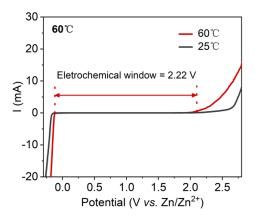



Fig. S1 The electrochemical voltage windows of PVA-0.5SL at 60°C.

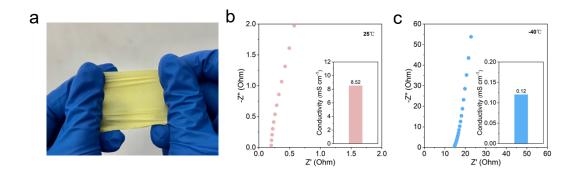



Fig. S2 (a) Digital photo of PVA-0.5SL embedded in a porous polyimide membrane. Ionic conductivity of PVA-0.5SL embedded in a polyimide membrane at  $25^{\circ}$ C (b) and  $-40^{\circ}$ C (c).

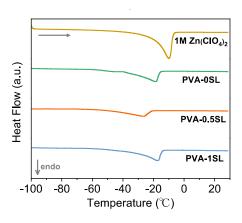



Fig. S3 DSC curves for 1 M  $Zn(ClO_4)_2$  and different PVA-based hydrogel electrolytes during the heating process from -100 to 30°C.

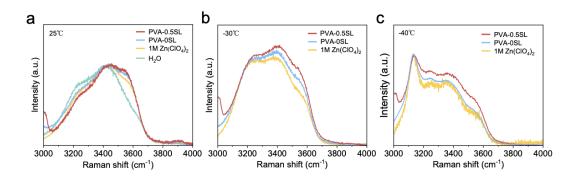



Fig. S4 Ramn spectra of the O-H stretching vibrations for  $H_2O$  molecules in different electrolytes at the temperature of 25°C (a), -30°C (b), and -40°C (c)

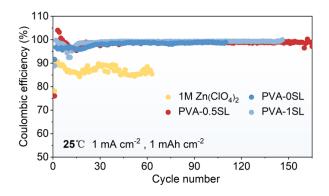



Fig. S5 Coulombic efficiency for Zn deposition in different electrolyte using Zn||Cu cells under 1 mA cm<sup>-2</sup> and 1 mAh cm<sup>-2</sup>.

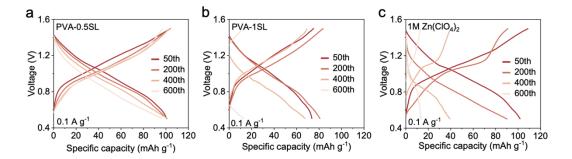



Fig. S6 Charge-discharge voltage curves of  $Zn \parallel PANI$  full cells with different electrolytes at different cycles.

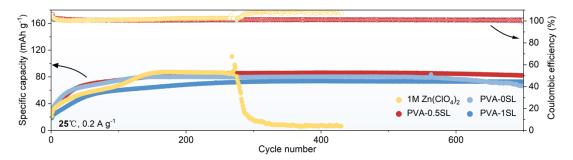



Fig. S7 Cycling stability of Zn||PANI full cells with different electrolytes at 0.2 A  $g^{-1}$  and 25°C.