Support cooperative single atom on Ti_{3-x}C₂O_y for efficient electrochemical CO₂ reduction: A DFT study

Qiannan Zhou^a, Xiaofei Song^b, Yangyang Song^a, Zean Xie^a, Yu Ren^{*,a}, Zhen

Zhao*,a,b

- ^a Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, China.
- ^b State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 18#
 Fuxue Road, Chang Ping, Beijing 102249, China.

^{*}Corresponding authors.

E-mail addresses: zhenzhao@cup.edu.cn (Z. Zhao), zhaozhen1586@163.com.

Gibbs free energy of reaction for CO_2 RR elementary steps involving (H⁺ + e⁻) pair transfer was calculated using computational hydrogen electrode (CHE) model by Nørskov et al., defined as $\Delta G_n(U) = \Delta G_n(U=0) + \text{neU}$, where n is the number of (H⁺ + e⁻) pairs transferred in CO₂ RR, e is the unit charge and U is the electrode potential versus the reversible hydrogen electrode (RHE). At U=0 V, $\Delta G_n = \Delta E_n - T\Delta S + \Delta ZPE$ $+\Delta E_{sol} + \Delta G_{pH}$, where ΔE_n is DFT-calculated reaction energy in vacuum, T ΔS is the entropy contributions to the reaction at T=298K, ΔZPE is zero-point energy (ZPE) correction based on the calculated vibrational frequencies, ΔE_{sol} represents the correction of H_2O solvation effect at the water-solid interface, and ΔG_{pH} represents the correction of the free energy due to the variations in $\mathrm{H^{+}}$ concentration, defined as G_{pH} $= -kT \ln[H^+] = kT \ln 10 \times pH$, and the value of pH was set to 0 for strong acidic medium in this work and therefore, the calculated limiting potentials (U_L) were referenced to the RHE. Implicit model was used for treating H_2O solvation effect, where ΔE_{sol} was accounted for depending on OH-containing species and their binding situations2: *R-OH bound to M directly/indirectly through hydroxyl is stabilized by approximately 0.5eV/0.25eV, respectively, and those containing no hydroxyl (e.g., *CO, *CHO, *CH₂O, *CH₃O, CH_x) were stabilized approximately by 0.1eV. The limiting potential (U_L) is obtained from the maximum free energy change (ΔG_{max}) among all elementary steps along the lowest-energy pathway by using the relation of $U_L = -\Delta G_{max}/e$.

The entropies of the gaseous molecules were taken from the NIST Chemistry WebBook [1] and the zero-point energy (ZPE) was calculated according to:

$$E_{ZPE} = \sum_{i=1}^{3N} \frac{hv_i}{2}$$

The entropy change for adsorbed intermediates was calculated within the harmonic approximation:

$$\Delta S_{ads}(0 \to T, P^0) = S_{vib} = \sum_{i=1}^{3N} \left[\frac{N_A h v_i}{\frac{h v_i}{k_B T} - Rln(1 - e^{-h v_i} / k_B T)} \right]$$

Where vi is DFT-calculated normal-mode frequency for species of 3N degree of

freedom (N=number of atoms) adsorbed on M@MoS₂ SACs, N_A is the Avogadro's constant (6.022×10^{23} mol⁻¹), h is the Planck's constant (6.626×10^{-34} Js), and k_B is the Boltzmann constant (1.38×10^{-23} JK⁻¹), R is the ideal gas constant (8.314 J K⁻¹mol⁻¹), and T is the system temperature, and T=298.15K in this work.

Table S1. Binding energy (E_b), O-C-O angles, bond length and Bader charge of CO_2 adsorbed on M@Ti_{3-x}C₂O_y in the most stable configuration.

Catalysts	E _b (eV)	Angle(°)	C(O)-M (Å)	C-O (Å)	Bader(e ⁻)
$Sc@Ti_{3-x}C_2O_y$	-0.89	130.6	2.36	1.22 1.31	-1.58
Y@Ti _{3-x} C ₂ O _y	-0.69	180.0	2.48	1.16 1.19	-1.53
$Mn@Ti_{3-x}C_2O_y$	-2.10	124.4	1.90	1.20 1.46	-0.87
Fe@Ti _{3-x} C ₂ O _y	-1.32	126.9	1.91	1.22 1.35	-0.56
Co@Ti _{3-x} C ₂ O _y	-1.06	131.0	1.87	1.26 1.29	-0.41
Ni@Ti _{3-x} C ₂ O _y	-0.74	132.9	1.93	1.22 1.30	-0.34
Cu@Ti _{3-x} C ₂ O _y	-0.37	129.3	2.00	1.21 1.32	-0.34
Ru@Ti _{3-x} C ₂ O _y	-1.37	127.8	2.02	1.20 1.40	-0.37
Rh@Ti _{3-x} C ₂ O _y	-0.90	131.0	2.06	1.22 1.32	-0.07
$Pd@Ti_{3-x}C_2O_y$	-0.50	135.2	2.09	1.21 1.29	0.02
Ag@Ti _{3-x} C ₂ O _y	-0.27	180.0	3.16	1.18 1.18	-0.05
Os@Ti _{3-x} C ₂ O _y	-1.64	124.8	2.03	1.20 1.45	-0.38
Ir@Ti _{3-x} C ₂ O _y	-1.09	127.5	2.08	1.21 1.34	0.02
Pt@Ti _{3-x} C ₂ O _y	-0.71	129.1	2.10	1.21 1.33	0.22
Au@Ti _{3-x} C ₂ O _y	-0.31	180	3.35	1.17 1.18	0.33

Table S2. Adsorption energy (in eV) of *O on M@Ti_{3-x}C₂O_y(M=Cr, V, Cu, Au).

Catalysts	*0
Cr@Ti _{3-x} C ₂ O _y	-3.83
V@Ti _{3-x} C ₂ O _y	-4.00
$Cu@Ti_{3-x}C_2O_y$	-2.92
$Au@Ti_{3-x}C_2O_y$	-2.78

Table S3. Adsorption energy (in eV) of *CO, *CHO, *CH₂O, *HCOOH, *CH₃OH and *H₂O on $M(N_X)@Ti_{3-x}C_2O_y$ SACs calculated using their corresponding gas-phase energy as the reference.

Catalysts	*CO	*CHO	*CH ₂ O	*HCOOH	*CH ₃ OH	*H ₂ O
Sc@Ti _{3-x} C ₂ O _y	-0.97	-3.41	-2.59	-1.76	-1.64	-1.27
Y@Ti _{3-x} C ₂ O _y	-0.68	-2.86	-2.10	-2.98	-1.59	-1.52
Mn@Ti _{3-x} C ₂ O _y	-2.55	-3.49	-2.65	-1.06	-1.44	-1.11

Fe@Ti _{3-x} C ₂ O _y	-2.55	-3.52	-2.49	-1.46	-1.47	-1.03
Co@Ti _{3-x} C ₂ O _y	-2.28	-3.14	-2.11	-1.24	-1.49	-1.16
Ni@Ti _{3-x} C ₂ O _y	-1.75	-2.59	-1.64	-1.02	-1.49	-1.15
Cu@Ti _{3-x} C ₂ O _y	-1.17	-2.27	-1.51	-1.05	-1.48	-1.14
Ru@Ti _{3-x} C ₂ O _y	-2.76	-3.61	-2.70	-1.07	-1.43	-1.10
Rh@Ti _{3-x} C ₂ O _y	-2.28	-3.02	-2.12	-1.10	-1.42	-1.10
$Pd@Ti_{3-x}C_2O_y$	-1.67	-2.51	-1.53	-0.96	-1.40	-1.08
Ag@Ti _{3-x} C ₂ O _y	-0.94	-2.07	-1.37	-0.95	-1.33	-1.03
Os@Ti _{3-x} C ₂ O _y	-3.17	-3.97	-2.94	-0.99	-1.38	-1.13
Ir@Ti _{3-x} C ₂ O _y	-2.68	-3.39	-2.31	-1.00	-1.38	-1.10
Pt@Ti _{3-x} C ₂ O _y	-2.07	-2.98	-1.76	-1.07	-1.36	-1.07
$Au@Ti_{3-x}C_2O_y$	-1.26	-2.63	-1.79	-0.82	-1.29	-1.02
FeN@Ti _{3-x} C ₂ O _y	-2.66	-3.51	-2.56	-1.50	-1.48	-1.10
CoN@Ti _{3-x} C ₂ O _y	-2.30	-3.04	-2.16	-1.26	-1.46	-1.13
NiN@Ti _{3-x} C ₂ O _y	-1.85	-2.65	-1.73	-1.19	-1.47	-1.13
$CuN@Ti_{3-x}C_2O_y$	-1.23	-2.51	-1.79	-1.27	-1.45	-0.11
FeN_2 $@Ti_{3-x}C_2O_y$	-2.71	-3.45	-2.55	-1.12	-1.47	-1.13
CoN_2 $@Ti_{3-x}C_2O_y$	-2.34	-3.13	-1.99	-1.19	-1.49	-1.15
NiN2@Ti3-xC2Oy	-1.91	-2.81	-1.88	-1.04	-1.48	-1.14
$CuN_2 @Ti_{3-x}C_2O_y$	-1.29	-2.65	-2.10	-1.09	-1.46	-1.13
FeN3@Ti3-xC2Oy	-2.71	-3.49	-2.59	-0.99	-1.49	-1.14
CoN_3 (a $Ti_{3-x}C_2O_y$	-2.34	-3.07	-2.06	-1.02	-1.46	-1.13
NiN3@Ti3-xC2Oy	-2.01	-2.88	-2.08	-1.07	-1.46	-1.12
$CuN_3@Ti_{3-x}C_2O_y$	-1.36	-2.75	-2.32	-1.11	-1.44	-1.10

Catalyst	$U_{L}(CO_{2}RR)$	U _L (HER)	$U_{L}(CO_{2}RR)$
	(V)	(V)	- U _L (HER)
Fe@Ti _{3-x} C ₂ O _y	-0.42	-0.43	0.01
FeN@Ti _{3-x} C ₂ O _y	-0.53	-0.47	-0.06
FeN ₂ @Ti _{3-x} C ₂ O _y	-0.66	-0.45	-0.21
FeN ₃ @Ti _{3-x} C ₂ O _y	-0.61	-0.52	-0.09
Co@Ti _{3-x} C ₂ O _y	-0.49	-0.27	-0.22
CoN@Ti _{3-x} C ₂ O _y	-0.62	-0.23	-0.39
CoN ₂ @Ti _{3-x} C ₂ O _y	-0.58	-0.25	-0.33
CoN ₃ @Ti _{3-x} C ₂ O _y	-0.63	-0.29	-0.34
Ni@Ti _{3-x} C ₂ O _y	-0.51	-0.02	-0.49
NiN@Ti _{3-x} C ₂ O _y	-0.59	-0.06	-0.53
NiN ₂ @Ti _{3-x} C ₂ O _y	-0.42	-0.11	-0.31
NiN ₃ @Ti _{3-x} C ₂ O _y	-0.53	-0.23	-0.3
Cu@Ti _{3-x} C ₂ O _y	-0.23	-0.12	-0.11
CuN@Ti _{3-x} C ₂ O _y	-0.35	-0.12	-0.23
CuN ₂ @Ti _{3-x} C ₂ O _y	-0.29	-0.14	-0.15
$CuN_3 @Ti_{3-x}C_2O_y$	-0.43	-0.29	-0.14

Table S4. The difference between the limiting potentials for the HER and CO₂RR on $M@Ti_{3-x}C_2O_y$, $MN@Ti_{3-x}C_2O_y$, $MN_2@Ti_{3-x}C_2O_y$ and $MN_3@Ti_{3-x}C_2O_y$.

Table S5. The data of *CO and *CHO adsorption energy, Bader charge analysis and d-band center.

Catalysts	*CO	*CHO	d-band center	Bader(e-)
Fe@Ti _{3-x} C ₂ O _y	-2.55	-3.52	-1.50	-0.45
FeN@Ti _{3-x} C ₂ O _y	-2.66	-3.51	-1.33	-0.46
FeN2@Ti3-xC2Oy	-2.71	-3.45	-1.12	-0.40
FeN ₃ @Ti _{3-x} C ₂ O _y	-2.71	-3.49	-1.09	-0.44

Table S6. The adsorption energy of *H and Bader charge analysis of nitrogen doping $M@Ti_{3-x}C_2O_{y}$.

Catalysts	*Н	Bader(e-)
Fe@Ti _{3-x} C ₂ O _y	-0.75	-0.49
FeN@Ti _{3-x} C ₂ O _y	-0.80	-0.52
FeN_2 ($i_{3-x}C_2O_y$	-0.77	-0.52
FeN_3 ($aTi_{3-x}C_2O_y$	-0.85	-0.51
Co@Ti _{3-x} C ₂ O _y	-0.60	-0.35
CoN@Ti _{3-x} C ₂ O _y	-0.56	-0.36
CoN_2 $@Ti_{3-x}C_2O_y$	-0.57	-0.35
CoN_3 @Ti _{3-x} C ₂ O _y	-0.61	-0.39
$Ni@Ti_{3-x}C_2O_y$	-0.30	-0.28

NiN@Ti _{3-x} C ₂ O _y	-0.38	-0.30
NiN ₂ @Ti _{3-x} C ₂ O _y	-0.43	-0.32
NiN ₃ @Ti _{3-x} C ₂ O _y	-0.55	-0.35
Cu@Ti _{3-x} C ₂ O _y	-0.19	-0.37
CuN@Ti _{3-x} C ₂ O _y	-0.43	-0.37
CuN2@Ti3-xC2Oy	-0.45	-0.42
CuN ₃ @Ti _{3-x} C ₂ O _y	-0.60	-0.45

Fig. S1 The side views of CO₂ adsorbed on $Cr@Ti_{3-x}C_2O_y$, $V@Ti_{3-x}C_2O_y$ and $Cu@Ti_{3-x}C_2O_y$.

Fig. S2. Free energy diagrams for the CO_2 reduction reaction on $M@Ti_{3-x}C_2O_y$ (M = Sc, Y, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au).

Fig. S3. Free energy diagram of the CO₂RR on MN@Ti_{3-x}C₂O_y, MN₂@Ti_{3-x}C₂O_y and MN₃@Ti_{3-x}C₂O_y (M=Fe, Co, Ni, Cu)

Fig. S4. Linear relationship among the binding energies of key intermediates *CO, *CHO, and *COOH.