Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Ag Single-Atom Modification of MgAl-LDH to Enhance the CH₄ Product Selectivity in CO₂ Reduction: A DFT Study

Yi-fu Liu^a, Feng Yang^{a, *} and Rui-tang Guo,^{a, b, *}

^a College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China

^b Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China

* Email: grta@sohu.com (Rui-tang Guo)

Figure S1. Optimized LDH structures with different Cl⁻ sites.

Figure S2. (a) Top view and (b) oblique view of the optimized MgAl-LDH structures with Cl⁻sites at HCP Al. (c) Bond length of the Mg-O and Al-O.

Figure S3. Optimized Ag/MgAl-LDH structures with different Ag sites.

Figure S4. (a) Top view and (b) oblique view of the Optimized Ag/MgAl-LDH structures with Ag-sites at HCP Mg. (c) Bond length of the Mg-O and Al-O.

Figure S5. Possible initial adsorption configuration of *CO₂ on Ag/MgAl-LDH.

Figure S6. The charge density difference of *COH intermediates on the Ag/MgAl-LDH at (a) top view, (b) front view, (c) oblique view, and (d) the slice plot.

Figure S7. The charge density difference of *CH₂OH intermediates on the Ag/MgAl-LDH at a) the top view, b) front view, c) oblique view, and d) the slice plot.

Lattice para	meters(A)	Cell Angles	$\mathfrak{s}(^{\circ})$
a	3.10373	α	89.990705
b	3.10372	β	90.009106
c	7.64898	γ	120.01846

Table S1. Lattice parameters of the bulk MgAl-LDH.

Table S2. Monolayer MgAl-LDH optimization energies with different Cl⁻ sites.

Structure	Single-point	Structural
	approximation energy (eV)	optimization energy (eV)
HCP A1	-9266.8506	-9269.1885
HCP Mg	-9266.2993	-9269.0818
Bridge Mg	-9266.4028	/
Bridge Mg(2)	-9266.3168	/
Bridge Al	-9266.7623	/
Bridge Al(2)	-9266.7623	/
FCC 3Mg	-9267.2903	-9269.0325
FCC 2Mg1Al	-9267.7403	/
Top 3Mg	-9267.4670	/
Top 2Mg1Al	-9267.7430	1

Table S3. Binding energies of Ag single atom with MgAl-LDH at different Ag sites.

Structure	Structural optimization energy (eV)	Combination energy E_b (eV)
HCP A1	-13219.7881	-4.9365
HCP Mg	-13220.1257	-5.4173
bridge Mg	-13238.4887	-4.5160
bridge Al	-13238.4425	-4.2307
FCC 3Mg	-13219.6144	-4.9975
FCC 2Mg1Al	-13220.0944	-5.3386
Top3Mg	-13256.3828	-3.0166
Top2Mg1Al	-13256.4371	-2.9207

Table S4. The standard theoretical values of Gibbs free energy change for the reactions generating different C1 products (the values are based on the NIST-JANAF database).

Reactions	$\Delta G(kJ \cdot mol^{-1})$	$\Delta G(eV)$
$CO_2+H_2=CO+H_2O(l)$	20.085	0.2082
$CO_2 + 4H_2 = CH_4 + 2H_2O(1)$	-130.661	-1.3542
$CO_2 + 2H_2 = CH_2O + H_2O$ (1)	47.327	0.4905
$CO_2+H_2=HCOOH$ (l)	36.847	0.382
CO ₂ +3H ₂ =CH ₃ OH (1)+H ₂ O (1)	-9.632	-0.0998
$CO_2 + H_2 = CO + H_2O(1)$	20.085	0.2082

 Table S5. Population analysis of *COH intermediate.

Element	Mulliken charge	Bond	Bond population
С	0.3	C-O ₍₁₎	1.04
O ₍₁₎	-0.51	C-O ₍₂₎	0.63
O ₍₂₎	-0.76	C-Ag	-0.32
Ag	0.65	$Ag-O_{(1)}$	0.03

 Table S6. Population analysis of *CH₂OH intermediate.

Element	Mulliken charge	Bond	Bond population
Н	0.34	H-O ₍₃₎	0.21
С	-0.05	C-O ₍₁₎	0.63
O ₍₁₎	-0.65	C-O ₍₂₎	0.46
O ₍₂₎	-0.77	C-Ag	-0.38
O ₍₃₎	-0.94		
Ag	0.8		

Detailed structure parameters could be retrieved from the CCDC number 2436716 for MgAl-LDH and 2436715 for Ag/MgAl-LDH.