Supporting Information

Sintering Resistant CuO/CeO₂ Catalysts Prepared by Reversed Impregnation Method for Ethyl Acetate Oxidation

Yuchuan Ye^{1,2}, Zhouhao Zhu², Wanjin Yu³, Shaohong Zang⁴, Yingtang Zhou⁵, Liuye Mo^{*2}, Lei Jiao^{*1}

- 1. Ocean College, Zhejiang University, Zhoushan 316021, PR China
- 2. School of Petrochemical & Environment, Zhejiang Ocean University, Zhoushan 316022,

PR China

3. State Key Lab Fluorinated Greenhouse Gases Replacement control and treatment,

Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, PR China

4. National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University,

Zhoushan 316022, PR China

5. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022,

PR China

*Correspondence: liuyemo@zjou.edu.cn, jiaolei@zju.edu.cn

* Corresponding author. E-mail address: liuyemo@zjou.edu.cn, jiaolei@zju.edu.cn

[#] These authors contributed equally to this work.

Contents

Figure Captions
Figure S1. TG-DSC curves of (a) $Ce(NO_3)_3 \cdot 6H_2O$; (b) $Cu(OAc)_2 \cdot H_2O$ and (c)
uncalcined 5N/A catalyst4
Figure S2. Nitrogen adsorption-desorption isotherms and Pore distributions of the
5N/A-Y and IM-Y catalysts
Figure S3. Nitrogen adsorption-desorption isotherms and Pore distributions of the
XN/A-500 catalysts
Figure S4. XRD patterns of 5N/A-Y and IM-Y catalysts5
Figure S5. SEM mapping images of (a)N/A-O-500, (b)N/C-500 and (c)N/N-O-500 catalysts
Figure S6. SEM image of CeO ₂ sample obtained by calcination of Ce(OAc) ₃ at 300
°C for 4h6
Figure S7. SEM mapping images of XN/A-500 catalysts7
Figure S8. The optimized structures of CeO ₂ (111) and Cu doped CeO ₂ (111)
surfaces7
Figure S9. The CeO ₂ particle size histograms of 5N/A-Y and IM-Y catalysts8
Figure S10. O ₂ -TPD profiles of the XN/A-500 catalysts8
Figure S11. H ₂ consumption of three reduction peaks on CuO/CeO ₂ catalysts9
Figure S12. Catalytic activities for fresh 5N/A-500, IM-500 and hydrothermal
ageing 5N/A-500HA, IM-500HA catalysts10
Figure S13. Carbon balance of CuO/CeO ₂ -Y catalysts at (a) T_{50} and (b) T_{100} during
EA oxidation10
Figure S14. Durability test of 5N/A-500 and IM-500 catalysts at 210 $^{\circ}$ C11
Figure S15. XRD patterns of the 5N/A-500 catalysts fresh and used11
Figure S16. Raman spectra of the 5N/A-500 catalysts fresh and used12
Figure S17. XPS spectra of the 5N/A-500 catalysts fresh and used12
Figure S18. Five-cycle catalytic activity of the 5N/A-50013
Figure S19. COx yields and distributions of by-products over the 5N/A-500 under
20 vol.% O_2 (a, b) and without O_2 (c, d) atmosphere13
Figure S20. COx yields and distributions of by-products over the 5N/C-500, 5N/A-
O-500 and 5N/N-O-500 catalysts14
Figure S21.COx yields and distributions of by-products over the $CeO_2(500)$ and
CuO (A-O) catalysts15
Figure S22.COx yields and distributions of by-products over the 15N/A-500,

10N/A-500 and 3N/A-500 catalysts
Figure S23. COx yields and distributions of by-products over the 1N/1A-500,
N/3A-500 and N/5A-500 catalysts17
Figure S24. Catalytic activities of IM-500 catalyst with 3.0 vol.% water vapor
contents
Figure S25. Optimized structures of H ₂ O and EA molecules adsorbed on the
surfaces of CeO ₂ (111) and Cu doped CeO ₂ (111)18
Figure S26. In-situ FTIR spectra of EA adsorption at different time over 5N/A-500
catalyst under 1000 ppm EA/20% O_2 /He/3.0 vol.% water vapor content19
Figure S27. MS signal of EA catalytic oxidation over 5N/A-500 catalyst under
1000 ppmEA/20% O ₂ /He and 3.0 vol.% water vapor atmospheres at 80 °C19
Figure S28. Comparison of adsorption energies of H_2O , O_2 and EA on the Cu doped
CeO ₂ (111) surface

Table Captions	21
Table S1. Specific surface areas, crystallite sizes and cell parame	eters of the
CuO/CeO ₂ catalysts	21
Table S2. The Cu, Ce and O contents of energy dispersion spectrum	(EDS) over
the CuO/CeO ₂ catalysts	22
Table S3. H ₂ -TPR analysis of the 5N/A-Y catalysts	22
Table S4. XPS analysis of the 5N/A-500 catalysts fresh and used	22
Table S5. Comparison of the EA conversion temperature with other ca	talysts23

Figure S1. TG-DSC curves of (a) $Ce(NO_3)_3 \cdot 6H_2O$; (b) $Cu(OAc)_2 \cdot H_2O$ and (c) uncalcined

5N/A catalyst.

Figure S2. (a) Nitrogen adsorption-desorption isotherms and (b) Pore distributions of the

5N/A-Y and IM-Y catalysts.

Figure S3. (a) Nitrogen adsorption-desorption isotherms and (b) Pore distributions of the

Figure S4. XRD patterns of 5N/A-Y and IM-Y catalysts.

Figure S5. SEM mapping images of (a)N/A-O-500, (b)N/C-500 and (c)N/N-O-500 catalysts.

Figure S6. SEM image of CeO_2 sample obtained by calcination of $Ce(OAc)_3$ at 300 °C for

4h.

Figure S7. SEM mapping images of XN/A-500 catalysts.

Figure S8. The optimized structures of (a) CeO_2 (111) and (b) Cu doped CeO_2 (111) surfaces.

Figure S9. The CeO₂ particle size histograms of 5N/A-Y and IM-Y catalysts.

Figure S10. O₂-TPD profiles of the XN/A-500 catalysts.

Figure S11. H₂ consumption of three reduction peaks on the 5Ce/1Cu-500 and IM-500

catalysts.

Figure S12. Catalytic activities for fresh 5N/A-500, IM-500 and hydrothermal ageing 5N/A-

500HA, IM-500HA catalysts.

oxidation.

Figure S14. Durability test of 5N/A-500 and IM-500 catalysts at 210 °C.

Figure S15. XRD patterns of the 5N/A-500 catalysts fresh and after durability test.

Figure S16. Raman spectra of the 5N/A-500 catalysts fresh and after durability test.

Figure S17. XPS spectra of (a) Cu 2p, (b) Ce 3d and (c) O 1s for the 5N/A-500 catalysts fresh and after durability test.

Figure S18. Five-cycle catalytic activity of the 5N/A-500.

Figure S19. CO_x yields and distributions of by-products over the 5N/A-500 under 20 vol.%

 $O_{2}(a, b)$ and without $O_{2}(c, d)$ atmosphere.

Figure S20. CO_x yields and distributions of by-products over the 5N/C-500 (a, b), 5N/A-O-

500 (c, d) and 5N/N-O-500 (e, f) catalysts.

Figure S21. CO_x yields and distributions of by-products over the CeO₂(500) (a, b) and CuO

(A-O) (c, d) catalysts.

Figure S22. CO_x yields and distributions of by-products over the 15N/A-500 (a, b), 10N/A-

500 (c, d) and 3N/A-500 (e, f) catalysts.

Figure S23. CO_x yields and distributions of by-products over the 1N/1A-500 (a, b), N/3A-

500 (c, d) and N/5A-500 (e, f) catalysts.

Figure S24. Catalytic activities of IM-500 catalyst with 3.0 vol.% water vapor contents.

Figure S25. Optimized structures of H_2O and EA molecules adsorbed on the surfaces of (a) $CeO_2(111)$ and (b) Cu doped $CeO_2(111)$. (Yellow, purple, and red colors is Ce, Cu, and O, respectively).

Figure S26. In situ FTIR spectra of EA adsorption at different time over 5N/A-500 catalyst under

1000 ppm EA/20% O₂/He/3.0 vol.% water vapor content.

Figure S27. MS signal of EA catalytic oxidation over 5N/A-500 catalyst under 1000 ppm (a)

EA/20% O_2 /He and (b) 3.0 vol.% water vapor content atmospheres at 80 °C.

Figure S28. Comparison of adsorption energies of H_2O , O_2 and EA on the Cu doped $CeO_2(111)$ surface.

Catalysts	SA (m²/g)	Pore diameter (nm)	Pore volume (cm ³ /g)	CeO ₂ crystallite size ^a (nm)	CuO crystallite size ^a (nm)	Cell parameter (nm)
CeO ₂ (500)	74	10.8	0.16	18.2	-	0.5401
CuO(A-O)	1	17.3	0.01	-	34.1	-
IM-500	49	10.4	0.13	23.4	7.9	0.5392
5N/C-500	20	5.9	0.03	13.1	2.1	0.5389
5N/N-O-500	62	10.7	0.17	14.9	-	0.5385
5N/A-O-500	64	9.6	0.19	13.7	-	0.5382
5N/A-500	106	7.9	0.20	9.4	-	0.5370
15N/A-500	74	11.9	0.22	12.6	-	0.5381
10N/A-500	74	10.5	0.19	10.9	-	0.5379
3N/A-500	53	8.2	0.11	11.8	-	0.5375
1N/1A-500	12	10.7	0.03	15.3	3.2	0.5383
N/3A-500	10	9.1	0.02	15.3	4.7	0.5387
N/5A-500	5	6.8	0.02	12.9	8.1	0.5391
5N/A-300	58	10.2	0.16	10.3	-	0.5401
5N/A-400	65	9.4	0.15	9.8	-	0.5387
5N/A-600	105	6.8	0.20	9.6	-	0.5373
5N/A-700	75	6.2	0.16	14.7	1.4	0.5378
5N/A-800	38	6.1	0.08	18.7	2.6	0.5380
IM-800	5	14.7	0.02	42.5	18.7	0.5408

Table S1 Specific surface areas, crystallite sizes and cell parameters of the CuO/CeO_2 catalysts.

^a The crystallite sizes were calculated by the Scherrer equation.

		catalysts		
	Catalysts	Cu (wt.%)	Ce (wt.%)	O (wt.%)
	IM-500	7.84	52.11	40.05
Different	5N/C-500	6.95	51.17	41.88
preparation	5N/A-O-500	6.87	51.84	41.29
methods	5N/N-O-500	7.12	52.65	40.23
	5N/A-500	6.34	49.19	44.47
	•			
	5N/A-300	7.56	51.61	40.83
	5N/A-400	7.32	50.33	42.35
Different	5N/A-500	6.34	49.19	44.47
calcination	5N/A-600	6.47	49.65	43.88
temperatures	5N/A-700	6.52	50.17	43.31
	5N/A-800	6.78	50.35	42.87
	IM-800	8.36	54.5	37.14

 Table S2 The Cu, Ce and O contents of energy dispersion spectrum (EDS) over the CuO/CeO2

 catalysts

Table S3 $\rm H_2\text{-}TPR$ analysis of the 5N/A-Y catalysts

	Pea	k temperat	ure	H ₂	consumpt		
Catalysts	(°C)			((µmol/g _{cat})	H_2 consumption ratio	
	α	β	γ	α	β	γ	of $\alpha/(\alpha+\beta+\gamma)$
5N/A-300	-	202	225	-	306.8	380.9	-
5N/A-400	173	198	216	243.3	197.9	180.1	0.39
5N/A-500	164	195	-	234.9	323.4	-	0.42
5N/A-600	163	195	-	201.4	302.2	-	0.40
5N/A-700	160	192	225	56.3	297.3	28.6	0.14
5N/A-800	160	190	225	21.3	233.1	42.5	0.07

Table S4 XPS analysis of the 5N/A-500 catalysts fresh and after durability test

Catalysts	Surfac	e composition	(at.%)	Surface element molar ratio		
	Cu	Ce	0	Cu ⁺ /Cu ²⁺	Ce ³⁺ /Ce ⁴⁺	O_{ads}/O_{latt}
Fresh	7.79	12.00	50.94	0.65	0.29	0.65
Used	7.81	12.16	50.72	0.65	0.28	0.64

	1		1			-
Catalysts	T100	GHSV	Loading	Treatmen	Preparation	Rf.
	1 100	(h ⁻¹)	(wt.%)	t (°C, h)	method	iti.
5N/A-500	220	60,000	8.5%Cu	500, 4	Reversed	This
5N/A-800	230	60,000		800, 4	Impregnation	work
Cu/Al ₂ O ₃ /COR	255	32,000	1.9%Cu	550, 4	Impregnation	1
Cu–Mn– La((NH ₄) ₂ CO ₃)	240	12,500	35.6%Cu	550, 4	Co- precipitation	2
Cu-Ce	240	120,000	29.3%Cu	400, 3	Impregnation	3
15Cu/OMS-2	240	120,000	15%Cu	400, 4	Pre- incorporation	4
CeCuY ₂ O ₃ -S5	250	15.000		500, 4		-
CeCuY ₂ O ₃ -S8	260	15,000	-	800, 4	Sol-Gel	5
Cu/CeO ₂	275	60,000	20%Cu	550, 2	Impregnation	6
Cu/CeO ₂	260	60,000	20%Cu	550, 2	Impregnation	7
Cu _{0.15} Ce _{0.85}	240	50,000	15%Cu	550, 2	Urea–nitrate Combustion	8
CuO/CeO ₂ -800	260	60,000	5%Cu	800, 4	Modified Impregnation	9
Cu10/Al ₂ O ₃ -SiO ₂	300	5,000	10%Cu	600, 4	Impregnation	10
$Ce_{0.8}Sn_{0.2}O_2$ -500	235			500, 6		
Ce _{0.8} Sn _{0.2} O ₂ -800	250	60,000	-	800, 4	Combustion	11
$0.37 AuPd_{2.72}/TiO_2$	260	40,000	0.37%AuPd	450, 4	Impregnation	12
Pt/CeMnO _X	240	20,000	0.5%Pt	500, 4	Impregnation	13
Pd/CeCuO-Y ₂ O ₃ -500	260			500, 4		
Pd/CeCuO-Y ₂ O ₃ -800	270	40,000	0.28%Pd	800, 4	Impregnation	14
Pt/ZrO ₂	230	30,000	1%Pt	600, 4	Impregnation	15
Pt/Al ₂ O ₃	250	30,000	1%Pt	600, 4	Impregnation	15
Pt/Co ₃ O ₄ -CeO ₂	220	30,000	2%Pt	400, 1	Hydrothermal	16
Pt/Al ₂ O ₃	240	30,000	2%Pt	400, 1	Hydrothermal	16
Pt/Al ₂ O ₃	340	105,000	0.5% Pt	500, 2	Impregnation	17

Table S5 Comparison of the conversion temperature for EA with other catalysts

References

- 1. M. Ma, R. Yang, Z. Jiang, C. Chen, Q. Liu, R. Albilali and C. He, *Fuel*, 2021, **303**, 121244.
- 2. R. Xiao, R. Qin, C. Zhang, S. Chen and J. Wang, *Journal of Rare Earths*, 2021, **39**, 817-825.
- 3. L. Lv, Z. Zhang, S. Wang, Y. Shan, L. Wang, T. Xu and P. He, *Catalysis Communications*, 2024, **186**, 106832.
- 4. Z. Fu, M. Chen, Q. Ye, N. Dong and H. Dai, *Catalysts*, 2021, **11**, 713.
- 5. R. Ma, X. Su, L. Jin, J. Lu and M. Luo, *Journal of Rare Earths*, 2010, **28**, 383-386.
- 6. M. Konsolakis, S. A. C. Carabineiro, G. E. Marnellos, M. F. Asad, O. S. G. P. Soares, M. F. R. Pereira, J. J. M. Órfão and J. L. Figueiredo, *Inorganica Chimica Acta*, 2017, **455**, 473-482.
- 7. M. Konsolakis, S. A. C. Carabineiro, P. B. Tavares and J. L. Figueiredo, *Journal of Hazardous Materials*, 2013, **261**, 512-521.
- 8. D. Delimaris and T. Ioannides, *Applied Catalysis B: Environmental*, 2009, **89**, 295-302.
- 9. Y. Ye, J. Xu, L. Gao, S. Zang, L. Chen, L. Wang and L. Mo, *Chemical Engineering Journal*, 2023, **471**, 144667.
- 10. T. Pei, L. Liu, L. Xu, Y. Li and D. He, *Catalysis Communications*, 2016, 74, 19-23.
- 11. Y. Jiang, Q. Wang, J. Xu, S. Zang, L. Chen, L. Wang and L. Mo, *Catalysts*, 2023, **13**, 1400.
- 12. M. Bao, Y. Liu, J. Deng, L. Jing, Z. Hou, Z. Wang, L. Wei, X. Yu and H. Dai, *Catalysts*, 2023, **13**, 643.
- 13. L. Li, Y. Liu, J. Deng, L. Jing, Z. Hou, R. Gao and H. Dai, *Catalysts*, 2023, **13**, 676.
- 14. X.-W. Su, L.-Y. Jin, J.-Q. Lu and M.-F. Luo, *Journal of Industrial and Engineering Chemistry*, 2009, **15**, 683-686.
- 15. W. Zhang, S. Xia, C. Chen, H. He, Z. Jin, M. Luo and J. Chen, *New Journal of Chemistry*, 2021, **45**, 11352-11358.
- 16. K. Inoue and S. Somekawa, *Chemical Engineering & Technology*, 2019, **42**, 257-260.
- 17. H. Rotter, M. Landau, M. Carrera, D. Goldfarb and M. Herskowitz, *Applied Catalysis B: Environmental*, 2004, **47**, 111-126.