Supplementary Information

Polarization Induced NO₂ Sensing and Amine Generation using Sb Single-Atoms Embedded in Few-Layered MnPS₃ Flatlands

Nirman Chakraborty,^{1,2*} Souvik Bhattacharjee³, Anagha Ghosh², Efrat Lifshitz⁴, Swastik Mondal^{2,5*}

¹Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany

²CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India

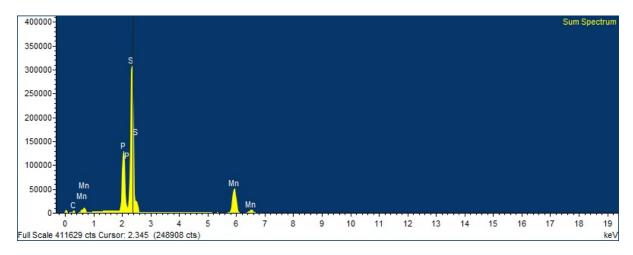
³School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Kolkata 700032, India

⁴Schulich Faculty of Chemistry, Solid State Institute, Russel Berrie Nanotechnology Institute, Grand Program for Energy and the Helen Diller Quantum Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel

⁵Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

Contents

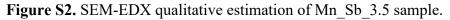
- 1. Structural parameters of pristine and nitrobenzene intercalated MnPS₃ single crystals
- 2. Synthesis of Sb/MnPS₃ and Sb Single Atoms (SAs)
- 3. Compositional analyses using SEM-EDX
- 4. TEM grid preparation and additional TEM images
- 5. XPS and BET results
- 6. Gas sensing and ORR experiments
- 7. Raman spectroscopy
- 8. Theoretical results


1. Structural parameters of pristine and nitrobenzene intercalated MnPS₃ single crystals

<u>Mn_NB_1</u> 100 K	<u>Mn_NB_2</u>	Mn_NB_3
100 K	100 V	
10011	100 K	100 K
1 C 1 2/m 1	C 1 2/m 1	C 1 2/m 1
), 5.8101(7),	5.8096(7),	5.8103(2),
5), 10.0606(11),	10.0596(10),	10.0646(4),
) 7.8083(9)	8.9093(9)	9.6135(3)
90,107	90,107	90,107
) 456.41(8)	520.67(8)	562.18(3)
	1 C 1 2/m 1), 5.8101(7), 5), 10.0606(11),) 7.8083(9) 90,107	1 C 1 2/m 1 C 1 2/m 1), 5.8101(7), 5.8096(7), 5), 10.0606(11), 10.0596(10),), 7.8083(9) 8.9093(9) 90,107 90,107

Table S1. Lattice parameters from SXRD measurements.

2. Synthesis of Sb/MnPS₃ and Sb Single Atoms (SAs)


30 mg of KSb(OH)₆ was dissolved in 250 ml of ultrapure water and 250 mg of nitrobenzene intercalated MnPS₃ crystals (Mn_NB_3) were added under sonication for 20 min. The mixture was then stirred rigorously for 24 hours at room temperature and centrifuged. The crystals were washed with ethanol and vacuum dried at 80°C for 12 hours. The as-prepared crystals were transferred to an alumina boat and carbonized at 1000°C for 3 hours with heating rate of 5°C/min. The sample collected was soaked in dil. H₂SO₄ for 6 hours to remove traces of metallic Sb and vacuum dried at 80°C for 12 hours. The concentration of SA loading was varied by increasing amount of KSb(OH)₆ precursor.

3. Compositional analyses using SEM-EDX

Figure S1. SEM-EDX qualitative estimation of MnPS₃ single crystals.

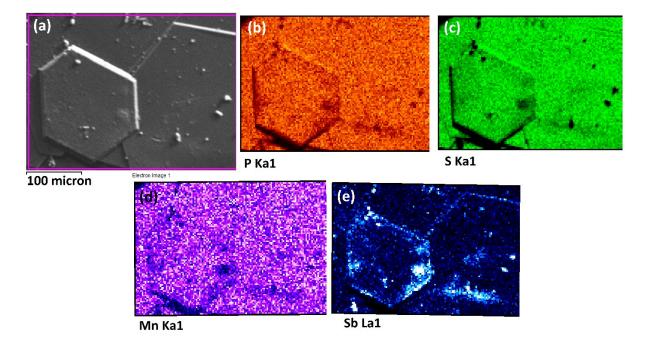
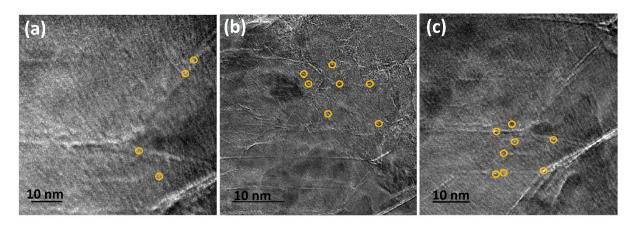



Figure S3. SEM-EDX colour mapping of Mn_Sb_3.5 sample.

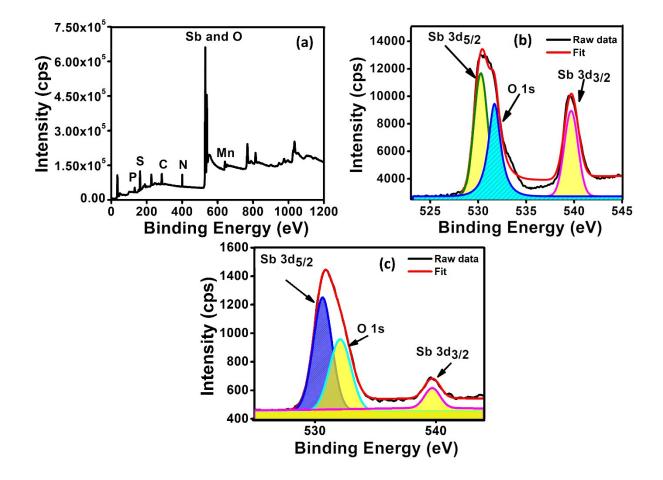
4. TEM grid preparation and additional TEM images

Standard "Blue Tape" (Ultron systems, INC. Silicon Free Blue Adhesive Film P/N 1007R-6.0) was cut into small pieces, and the few layer crystals were transferred onto them by an antimagnetic tweezer. The scotch tape was now held between two pieces of weighing paper and the TEM grid (carbon coated Cu grid from Ted Pella Inc.) was placed on the exfoliated sample (attached to scotch tape) on the carbon side and rubbed gently with a third piece of weighing paper. The whole arrangement was transferred to a 2D heater at 80°C and rubbed gently on the grid to enable transfer of sample from scotch tape on grid. The residual organic

molecules (glue from scotch tape) were removed by heating the grids under vacuum at 120°C for 2 hours. The samples were then ready for loading in the TEM machine.

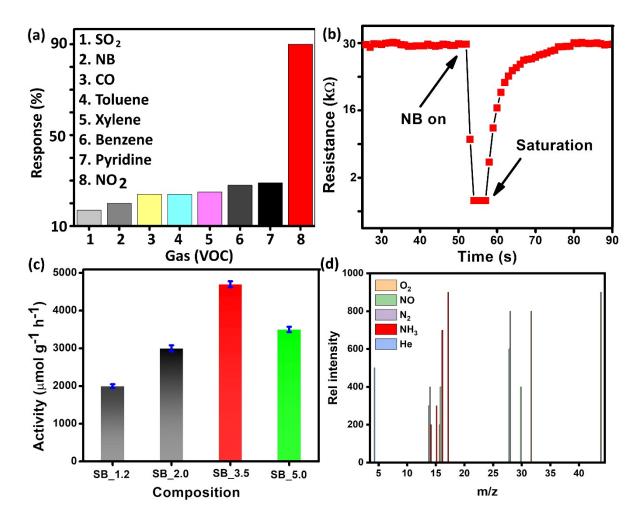
Figure S4. Bright field TEM images of (a) Mn_Sb_1.2 (b, c) Mn_Sb_2.0 samples, with Sb SAs highlighted in yellow colour circles.

5. XPS and BET results


Table S2. Values of binding energies (eV) of core-level spectra of different elements in all samples and their respective BET surface areas.

Elements	MnPS ₃	Mn_NB_Sb_1.2	Mn_NB_Sb_3.5	Mn_NB_Sb_5
Mn 2p _{3/2}	640.51	640.44	640.23	640.33
P-Sb (P 2p _{3/2})	134.17	134.21	134.25	134.22
S 2p _{3/2}	161.76	161.70	161.32	161.21
N 1s				
C-N/N-O		400.13/402.04	400.13/402.04	400.13/402.04
Sb 3d _{5/2}	530.0	530.89	530.94	529.98
BET surface	43	75	103	105
area (m ² /g)				

Table S3. Quantitative estimation of surface Sb composition (per formula unit of MnPS₃).


Elements	MnPS ₃	Mn_NB_Sb_1.2	Mn_NB_Sb_3.5	Mn_NB_Sb_5
Mn 2p	1.002	1.002	1.002	1.002
P 2p	1.010	1.009	1.007	1.009
S 2p	2.998	2.995	2.988	2.994

Sb 3d -		1.172	3.411	4.759
---------	--	-------	-------	-------

Figure S5. (a) Survey scan of Mn_Sb_3.5 sample, with all elements marked. (b) Sb 3d core level spectrum of Mn_NB_Sb_1.2 sample. (c) Sb 3d core level spectrum of Mn_NB_Sb_3.5 sample post catalytic measurements.

6. Gas sensing and ORR experiments

Figure S6. (a) Cross-sensitivity results of Mn_NB_Sb_3.5 sample, under 10 ppm of different gases and VOCs, at room temperature, in presence of 50μ W green light, at θ =50°. (b) Dynamic response of Mn_NB_Sb_3.5 sample, on saturation, with 10 ppm NO₂ in presence of 50μ W green light, at θ =50°. Response and recovery times were estimated as 10 s and 20 s, respectively. (c) Activity comparison of various compositions. (d) Gas chromatography results showing major components of catalytic reaction. ^[1-3]

Table S4.	Error calculation	in sensing measure	ments due to ambien	nt light conditions.
		\mathcal{O}		0

Sample	Error (%)
Mn_NB_Sb_1.2	4.6
Mn_NB_Sb_3.5	5.1

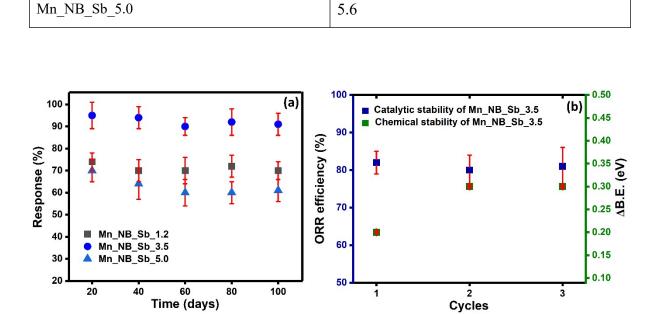


Figure S7. (a) Long term stability of the sensors with 10 ppm NO_2 in presence of $50\mu W$ green light, at θ =50° (b) Catalytic and chemical stability studies of Mn NB Sb 3.5 sample over three consecutive cycles.

Time (days)

θο	Mn_NB_Sb_1.2	Mn_NB_Sb_3.5	Mn_NB_Sb_5.0
0	1.2	1.4	2
30	2.7	2.1	2.2
60	1.4	1.8	2
90	1.7	1.8	1.6
120	1.1	1.8	1.9
150	2	1.3	1.6
180	1.6	2.5	1.4
210	2.4	2.2	2.1
240	2.2	2	2
270	2.8	2.3	2.5
300	2	1.9	2.6
330	1.7	1.9	1.8
360	1.9	1.6	1.5

Table S5. Statistical estimation of errors (%) in response estimation in sensing measurements.

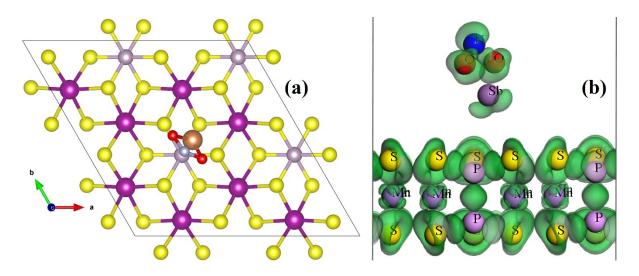



Figure S8. (a) Raman spectrum of $MnPS_3$ single crystal using a 532 nm laser source. (b) Polarization dependent Raman spectra of Mn_NB_3 sample, highlighting the P3 vibration mode (corresponding to the Mn^{2+} vibrations).

8. Theoretical results

7. Raman spectroscopy

Figure S9. (a) Optimized atomic structure (top view) for NO₂ attached with single Sb atom over $2 \times 2 \times 1$ supercell of MnPS₃ monolayer; (b) Electron density difference map (side view).

Table S6. Optimized Crystallographic parameters

Optimized CIF of the MnPS₃ bulk data MnPS3 _symmetry_space group name H-M 'C2/M' _symmetry_Int_Tables number 12 monoclinic symmetry cell setting loop symmetry equiv pos as xyz x,y,z -x,y,-z -х,-у,-z x,-y,z x+1/2,y+1/2,z -x+1/2,y+1/2,-z -x+1/2,-y+1/2,-z x+1/2,-y+1/2,z_cell_length a 6.2422 cell length b 11.0275 cell length c 7.2324 _cell_angle_alpha 90.0000 cell angle beta 105.8931 _cell_angle_gamma 90.0000 loop atom site label _atom_site_type symbol _atom_site_fract x _atom_site fract y atom site fract z _atom_site_U_iso_or equiv _atom_site_adp type atom site occupancy S1 S 0.73344 0.34527 0.73816 0.00515 Uani 1.00 Mn1 Mn 0.50000 0.16639 0.50000 0.00631 Uani 1.00 S2 S 0.26261 0.50000 0.73914 0.00533 Uani 1.00 P1 Р 0.55116 0.50000 0.65945 0.00440 Uani 1.00 loop _atom_site aniso label atom site aniso U 11 atom site aniso U 22 atom site aniso U 33 atom site aniso U 12 _atom_site aniso U 13 atom site aniso U 23 **S**1 0.00451 0.00474 0.00637 0.00065 0.00178 0.00000 Mn1 0.00408 0.00639 0.00881 0.00000 0.00234 0.00000 S2 $0.00376 \quad 0.00551 \quad 0.00776 \quad 0.00000 \quad 0.00335 \quad 0.00000$ P1 $0.00343 \quad 0.00529 \quad 0.00498 \quad 0.00000 \quad 0.00201 \quad 0.00000$ loop

geom bond atom site label 1 _geom_bond atom site label 2 _geom_bond_distance _geom_bond_site_symmetry_2 ccdc geom bond type **S**1 2.758 . S Mn1 **S**1 P1 2.043 . S **S**1 Mn1 2.706 7 656 S Mn1 **S**1 2.758 2 656 S Mn1 **S**1 2.706 8 455 S 2.706 7 656 S Mn1 **S**1 Mn1 S2 2.737 6 546 S S2 Mn1 2.737 5 545 S S2 P1 2.036 . S S2 Mn1 2.737 5 455 S S2 Mn1 2.737 7 556 S **P1 S**1 2.043 4 565 S P1 P1 2.218 2 656 S **Optimized CIF of the MnPS₃ monolayer** data MnPS3 Monolayer _symmetry_space_group_name_H-M 'P1' _symmetry_Int_Tables_number 1 symmetry cell setting triclinic loop _symmetry_equiv_pos_as_xyz x,y,z cell length a 6.2823 _cell_length b 6.2825 _cell_length c 22.9087 cell angle alpha 90.0000 _cell_angle beta 90.0000 cell angle gamma 120.0000 loop atom site label atom site type symbol _atom_site_fract x _atom_site_fract_y atom site fract z _atom_site_U_iso_or equiv atom site adp type atom site occupancy Mn1 Mn 0.33326 0.66669 0.50000 0.01267 Uiso 1.00 Mn2 Mn 0.66674 0.33331 0.50000 0.01267 Uiso 1.00 P1 Р 0.00067 0.00095 0.45146 0.01267 Uiso 1.00 P2 Р 0.99933 0.99905 0.54854 0.01267 Uiso 1.00 **S**1 S 0.00100 0.68878 0.42719 0.01267 Uiso 1.00 S2 S 0.99900 0.31122 0.57281 0.01267 Uiso 1.00

S3	S	0.31370	0.31412	0.42724	0.01267 Uiso	1.00	
S4	S	0.68630	0.68588	0.57276	0.01267 Uiso	1.00	
S5	S	0.68835	0.00141	0.42721	0.01267 Uiso	1.00	
S6	S	0.31165	0.99859	0.57279	0.01267 Uiso	1.00	

Table S7. Estimation of Gibb's Free Energy with contribution from laser source.

Reaction product	$\Delta G (eV)$	hγ (eV)
NO ₃ -	-1.7	1.2
HNO ₃	-1.9	1.1
NO ₂	-2.9	1.1
HNO ₂	-3	1.2
NO	-4.2	1.1
HNO	-4	1.2
N	-4.3	1.1
NH	-4.4	1.1
NH ₂	-5.3	1.2
NH ₃	-6.2	1.1

References

- 1. Kovats, E., Helv. Chim. Acta, 1958, 41, 1915.
- 2. Van Den Dool, H., Kratz, P.D., J. Chromatography, 1963, 11, 463-471.
- 3. Lee, M.L., Vassilaros, D.L., White, C.M., Novotny, M., Anal. Chem., 1979, 51(6), 768-773.