Supporting Information

Photocatalytic upcycling of marble waste into acetic acid by Copper Sulfide nanoparticles

Rohit,^a Khushi,^a Mukesh Jain,^a Ravindra Singh,^b Makkhan Lal Meena,^c Amar Patnaik,^c Jaidev Kaushik,^{*,d} and Sumit Kumar Sonkar^{*,a}

^aDepartment of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur-302017, INDIA

^bDepartment of Chemistry, Maharani Shri Jaya Government Post-Graduate College, Bharatpur, Rajasthan 321001, India

^cDepartment of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur, Jaipur-302017, INDIA

^dDepartment of Chemistry, School of Engineering and Sciences, SRM University - AP, Andhra Pradesh, 522240, India

*To whom correspondence should be addressed: <u>jaidev.k@srmap.edu.in</u>, <u>sksonkar.chy@mnit.ac.in</u>

Table of Contents

- 1. Experimental
- 2. UV-Vis absorbance spectra of CuS-NPs solid powder
- 3. FESEM images of CuS-NPs
- 4. Tabulated ¹H NMR Peaks of the product (AcOH)
- 5. LCMS analysis of the photo-reduced product (AcOH)
- 6. Percentage decrease in the yield of AcOH with different scavengers
- 7. Optimization of marble dust loading

1. Experimental

Materials and Reagents

All the chemicals and reagents used were of analytical grade and without further purification unless stated. Cupric Nitrate trihydrate (Cu(NO₃)₂).3H₂O (CDH), Sodium Sulfide fused flakes (Na₂S) (Thermo Fischer), 30 % w/v H₂O₂ (CDH) and De-Ionized water (Vartika Chemicals) were used. Marble dust (MD) was collected from Advance Research lab for Tribology, MNIT Jaipur, India.

Synthesis of CuS nanoparticles

In the first step, a 0.1 M Cu(NO₃)₂).3H₂O solution was prepared by dissolving approximately \sim 0.94 g of the Cu(NO₃)₂).3H₂O salt in 50 mL of distilled water. A saturated solution of sodium sulfide (Na₂S) was then added dropwise to this solution under continuous stirring until precipitation occurred, while maintaining the pH at \sim 10.2. The resulting precipitate was centrifuged and filtered using Whatman filter paper, followed by multiple washes with deionized water to remove impurities. Finally, the product was dried in a hot air oven at 60 °C, yielding a dark green-colored CuS nanopowder and named as CuS-NPs.

Instrumentation

X-ray diffractometer instrument (Panalytical X Pert Pro) was used to analyze powder X-ray diffraction (PXRD). Transmission electron microscopy (TEM) images was recorded using a Tecnai G2 20 (200 kV) X-ray photoelectron spectra (XPS) were performed using an ESCA+ omicron nanotechnology Oxford instrument. The ¹H, ¹³C NMR spectra were recorded using a JEOL ECS-400 spectrometer operating at 400 MHz. High-resolution Mass spectra (HRMS) were recorded on a Xevo G2-S Q-TOF (Waters, USA) mass spectrometer.

Photoreduction of Marble Dust to AcOH

The photocatalytic reduction of marble dust (carbonate) to AcOH was conducted in a borosilicate glass reagent bottle under control illumination of monochromatic light source. The marble dust served as the source of carbonate for CO_2 generation. 400 mg of CuS nanoparticles (photocatalyst) and 200 mg of marble dust were dispersed in 20 mL of an aqueous solution containing 1:1 v/v H₂O₂ (30% w/v) and deionized (DI) water. The suspension was irradiated under various light sources-including monochromatic 525 nm LED light, incandescent bulb light, and natural sunlight-to evaluate photocatalytic performance under different conditions.

The mixture was magnetically stirred in a borosilicate glass reactor under continuous irradiation for 4 hours. After that the reaction mixture was centrifuged and distilled in a distillation assembly to isolate the catalyst and remaining solid, and the liquid part were used for the product analysis. The product (AcOH) obtained was analyzed by ¹H NMR and verified by ¹³C NMR and HRMS spectroscopy. Reaction parameters such as catalyst loading, H_2O_2 concentration, irradiation time, and light source were systematically optimized to maximize AcOH yield.

2. UV-Vis absorbance spectra of CuS-NPs solid powder

Figure S1: (a) UV-Vis absorbance spectra of CuS-NPs solid powder with digital photo of CuS-NPs (inset) and (b) Direct band gap analysis of CuS-NPs by Tauc plot.

3. FESEM images of CuS-NPs

Figure S2: FESEM images of CuS-NPs (a) Low resolution; (b) High resolution.

4. Table S1: Detectable ¹H NMR peaks positions of internal standards and carbonate-reduced products.

Analytes	Detectable number of protons (splitting)	Peak position
Sodium formate (Internal standard for AcOH)	1 (s)	~8.42
AcOH	3 (s)	~1.88

5. LCMS analysis of photo-reduced product (AcOH)

Figure S3: Liquid chromatography-mass spectrometry (LCMS) analysis showed an isolatedpeakwithavalueof59m/zofproductAcOH.

S. No.	Scavenger Used	% Reduction in AcOH yield
1.	IPA	~97
2.	p-BZQ	~41
3.	$K_2S_2O_8$	~75
4.	Na ₂ EDTA	~82

6. Table S2: Percentage decrease in yield of AcOH with different scavengers.

7. Optimization of Marble Dust Loading.

Figure S4: Loading variation of Marble dust vs yield of AcOH.