Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Exploring the heterointerface of silver nanoparticle and cobalt oxide nanoring toward oxygen reduction reaction

Fatima Nasim¹, Hira Malik¹, Huilong Dong, and Muhammad Arif Nadeem^{1,2}

¹Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University,

Islamabad 45320, Pakistan

²Pakistan Academy of Sciences, 3-Constitution Avenue Sector G-5/2, Islamabad, Pakistan.

*Contact details:

M.A.N; manadeem@qau.edu.pk

H. D : hldong@szut.edu.cn; huilong_dong@126.com

Average crystallite size by using Debye-Sherrer equation

The crystallite size of the crystalline materials was estimated from X-ray diffraction patterns using the Debye-Scherrer equation.

$$D = K\lambda / \beta \cos\theta$$

The Scherrer constant (K) was taken as 0.89, and the wavelength (λ) of the X-ray was determined by the X-ray source, which was Cu K α radiation with a wavelength of 1.5406 Å. The FWHM (β) in radians was measured by determining the diffraction peak width at half of its maximum intensity, and the Bragg angle (θ) was obtained from the XRD pattern by locating the position of the diffraction peak.

Materials	Xc	FWHM (β)	D (nm)	Avg. Size
		(degree)		(nm)
Co ₃ O ₄	19.02	0.20203	41.66	
	31.21	0.22312	38.63	
	36.75	0.27953	31.29	34.2
	59.37	0.37749	25.31	
Ag/Co ₃ O ₄	19.02	0.24101	34.92	
	31.21	0.22634	38.08	
	36.75	0.30368	28.80	30.7
	59.37	0.45363	21.06	
Ag _{0.9} -Co ₃ O ₄ /NCNS	19.02	0.86593	9.72	
	31.21	0.80938	10.65	
	36.75	1.15051	7.60	9.5
	59.37	0.94389	10.12	

 Table S1: Crystallite size calculations of the synthesized materials

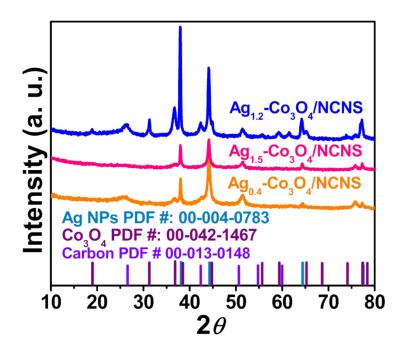


Figure S1: PXRD of all the silver-based catalysts

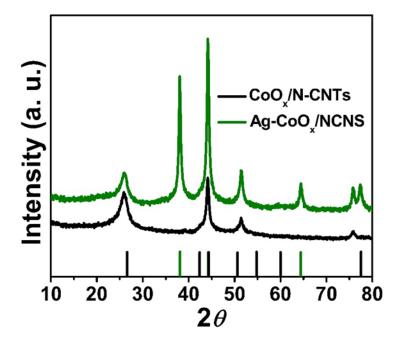


Figure S2: PXRD of CoO_x/N-CNTs and Ag-CoO_x/NCNS

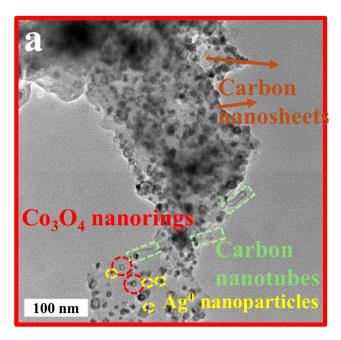


Figure S3: HRTEM analysis of Ag_{0.9}-Co₃O₄/NCNS at 100 nm

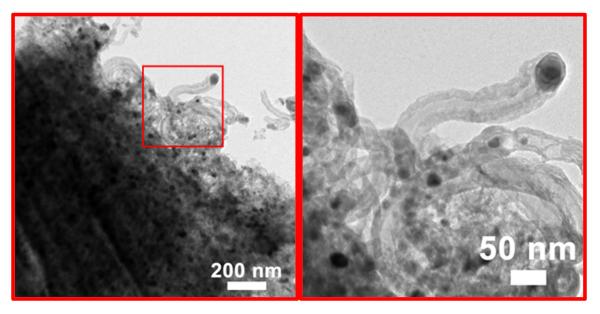


Figure S4: HRTEM of CoO_x/-N-CNTs at different resolutions¹

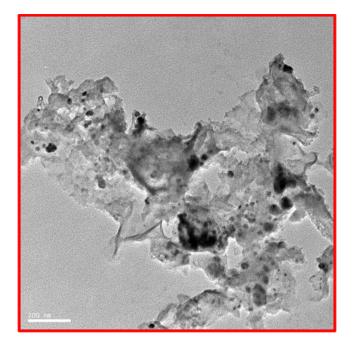


Figure S5: HRTEM of Ag-CoO_x/NCNS at 200 nm

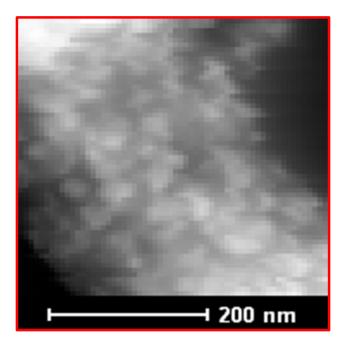


Figure S6: HAADF-STEM analysis of Ag_{0.9}-CO₃O₄/NCNS

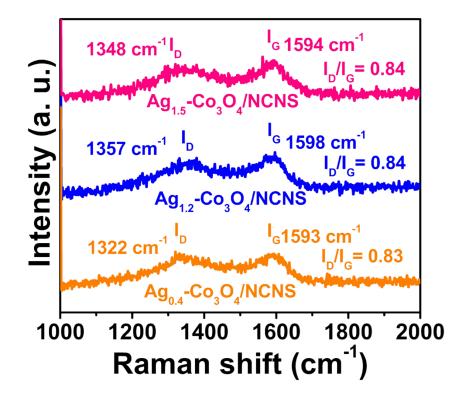
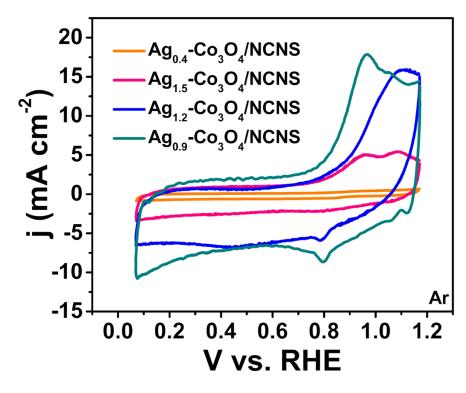
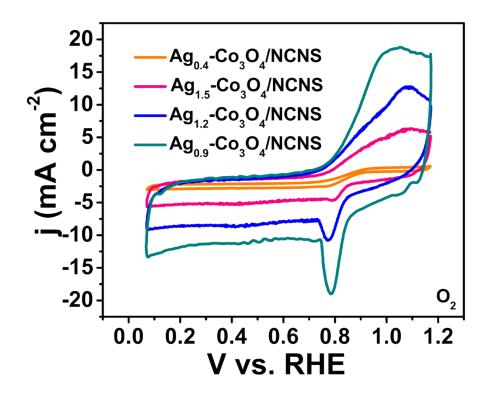




Figure S7: Raman analysis of Ag_{0.4}-Co₃O₄/NCNS, Ag_{1.2}-Co₃O₄/NCNS, and Ag_{1.5}-Co₃O₄/NCNS.

Figure S8: CV cycles of Ag_{0.4}-Co₃O₄/NCNS, Ag_{1.2}-Co₃O₄/NCNS, and Ag_{1.5}-Co₃O₄/NCNS in Ar saturated environment.

Figure S9: CV cycles of Ag_{0.4}-Co₃O₄/NCNS, Ag_{1.2}-Co₃O₄/NCNS, and Ag_{1.5}-Co₃O₄/NCNS in O₂ saturated environment.

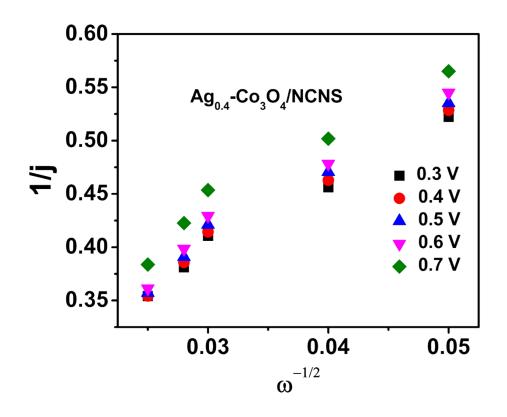


Figure S10: Electron count of Ag_{0.4}-Co₃O₄/NCNS.

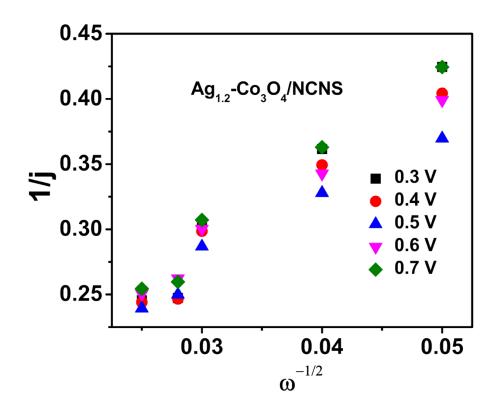
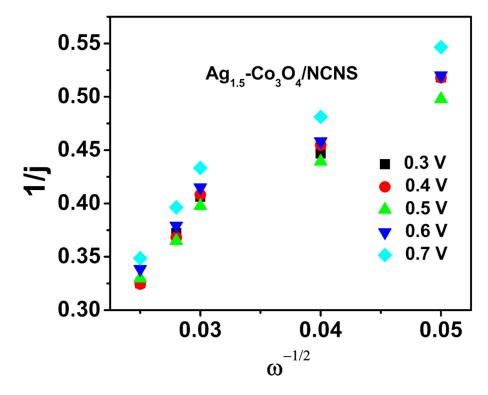



Figure S11: Electron count of Ag_{1.2}-Co₃O₄/NCNS.

Figure S12: Electron count of Ag_{1.5}-Co₃O₄/NCNS.

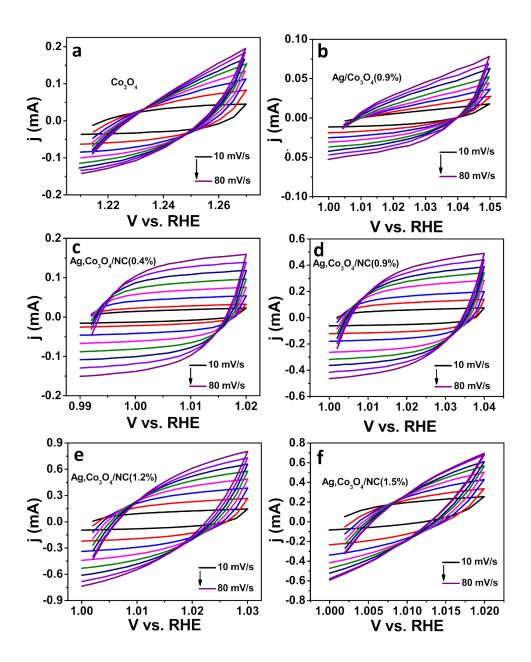


Figure S13: CV curves of all the synthesized materials in the non-faradic region

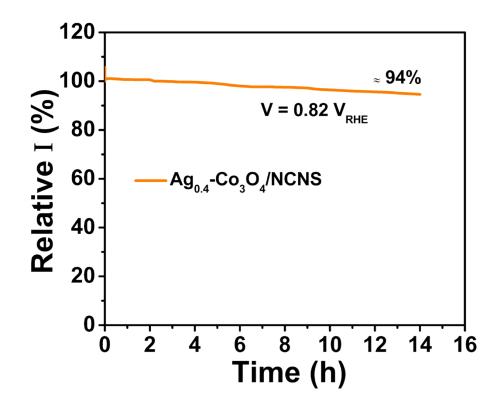


Figure S14: Chronoamperometric analysis of Ag_{0.4}-Co₃O₄/NCNS over 14 hrs.

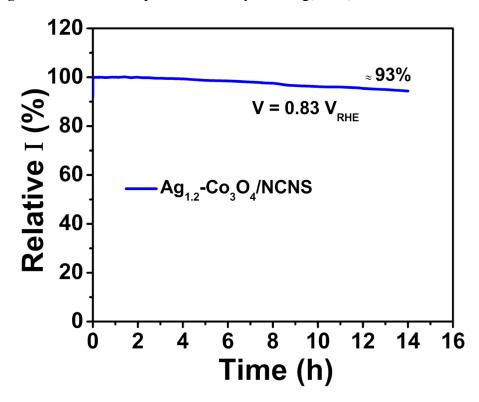


Figure S15: Chronoamperometric analysis of Ag_{1.2}-Co₃O₄/NCNS over 14 hrs.

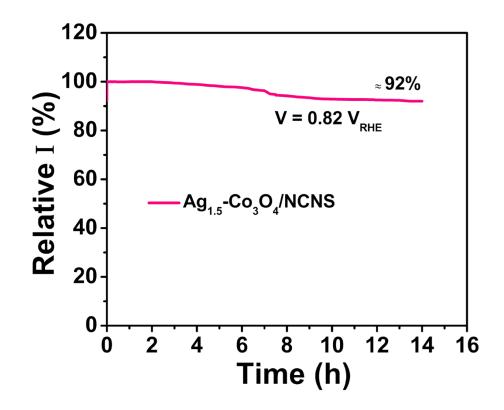


Figure S16: Chronoamperometric analysis of Ag_{1.5}-Co₃O₄/NCNS over 14 hrs.

S.No	Catalyst	C _{dl} (mF)	ECSA (cm ² mg ⁻¹)
1	Co ₃ O ₄	0.192	48
2	Ag _{0.9} /Co ₃ O ₄	0.113	28
3	Ag _{0.4} -Co ₃ O ₄ /NCNS	0.54	135
4	Ag _{0.9} -Co ₃ O ₄ /NCNS	1.47	367
5	Ag _{1.2} -Co ₃ O ₄ /NCNS	1.96	490
6	Ag _{1.5} -Co ₃ O ₄ /NCNS	0.918	230

References