Supporting information

Synergistic Optimization of Composition-Structure-Conductive

Network for High-Performance Integrated Transition Metal Oxide

Anodes for Lithium-Ion Batteries

Qiang Ma, Junwei Sha, Biao Chen, Enzuo Liu, Chunsheng Shi, Liying Ma, Fang He, Chunnian He, Naiqin Zhao, Jianli Kang*

Q. Ma, C. He, B. Chen, L. Ma, N. Zhao, J, Kang School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China State Key Laboratory of Precious Metal Functional Materials, Tianjin University, Tianjin, 300350, P.R. China National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, P.R. China E-mail: jianlikang@tju.edu.cn

C. Shi, J. Sha, F. He, E. Liu
School of Materials Science and Engineering,
Tianjin University, Tianjin, 300350, P.R.
China State Key Laboratory of Precious Metal Functional Materials,
Tianjin University, Tianjin, 300350, P.R. China

1.Supporting Figures

Fig. S1. The structure of hp-CM

Fig. S2.Description of dealloying process about hp-CM

Fig. S3. The structure and chemical composition of a) hp-CM and b) np-CM

Fig. S4. Comparison of elemental composition between np-CM and hp-CM

Fig. S5. XRD patterns of np-CM and npCM-CMO-Cu

Fig. S5. SEM images of hpCM@CMO

Fig. S6. SEM images of npCM-CMO-Cu

Fig. S7 MIP patterns of npCM-CMO-Cu electrode. a) Log Differential Intrusion vs Pore size and b) Cumulative Intrusion vs Pore size of npCM-CMO-Cu.

Figure S8 HRTEM images of hpCM-CMO-Cu.

Fig. S9. CV curves of hpCM@CMO electrode at 0.2 mV s⁻¹

Fig. S10. CV curves of npCM-CMO-Cu electrode at 0.2 mV s⁻¹

Fig. S11. Galvanostatic charge - discharge profiles of npCM-CMO-Cu electrode at 0.4 mA cm^{-2}

Fig. S12. Galvanostatic charge – discharge profiles of hpCM@CMO electrode at 0.4 $\rm mA~cm^{-2}$

Fig. S13. Linear relationship between log(i) and log(v).

Fig. S14. EIS spectra of hp-CM, hpCM@CMO, and hpCM-CMO-Cu after 50th cycles.

Fig. S15. Comparison of elemental composition between hpCM-CMO-Cu and npCM-CMO-Cu.

Fig S16 XPS spectra of hpCM-CMO-Cu first discharge and charge. a)Cu 2p, b)Mn 2p.

Fig. S17. XRD patterns of hpCM-CMO-Cu before and after 1st cycle.

Fig. S18 Comparison of hpCM-CMO-Cu and hpCM@CMO discharge profiles.

3. Supporting Tables

Table S1 Pore structure comparison of hpCM-CMO-Cu and npCM-CMO-Cu								
Materials	Porosity	Specific surface area (m ² /g)	The average size of nanopore(nm)	The average size of submicron pore(nm)				
hpCM-CMO-Cu	53.8660%	3.390	18.24	456.38				
npCM-CMO-Cu	48.9512%	3.486	11.47	/				

Table S2 Comparison of charge capacities of various three-dimensional selfsupported oxide electrodes from the literature

	active – substan ce	Electrochemical performance			
Materials		Current density [mA cm ⁻²]	Cycle number	Capacity retention [mAh cm ⁻²]	- Ref.
hpCM@CMO	Cu _x O, MnO	1	250	1.25	This wor k
npCM-CMO-Cu	Cu _x O, MnO	1	250	0.492	This wor k
hpCM-CMO-Cu	Cu _x O, MnO	1	250	4.38	This wor k
3D-HNP Cu _x O@m-Cu	Cu _x O	1	200	2.02	1
3D-HNP SnO ₂ /CuxO@n- Cu	Cu _x O, SnO ₂	1	200	3.34	2
3D NPCu@Cu ₂ O	Cu ₂ O	0.175	120	1.45	3
3D NPC@1D Cu ₂ O NWN	Cu ₂ O	0.1	150	1.64	4
nanoporous Sn - Co allov	Co ₃ Sn ₂	1	200	0.89	5
ATO/CC/OTO	TiO ₂ ,	1.6	140	~2.2	6
MnO/3DGS	MnŌ,	4.16	1000	1.57	7
MF-P 700	Fe ₃ O ₄ MnO, Fe ₃ C	0.4	250	0.97	8

References

- 1. X. M. Yan, H. Kang, P. Cheng, S. C. Zhang, S. Q. Shi and W. B. Liu, *EcoMat*, 2022, 4, e12208.
- X. M. Yan, W. B. Liu, H. Kang, S. C. Zhang and S. Q. Shi, Advanced Functional Materials, 2023, 33, 2212654.
- 3. D. Q. Liu, Z. B. Yang, P. Wang, F. Li, D. S. Wang and D. Y. He, *Nanoscale*, 2013, 5, 1917-1921.
- 4. W. B. Liu, L. Chen, L. Cui, J. Z. Yan, S. C. Zhang and S. Q. Shi, *Journal of Materials Chemistry A*, 2019, 7, 15089-15100.
- 5. H. Kang, H. Y. Liu, H. M. Gou, S. C. Zhang and W. B. Liu, *Journal of Materials Chemistry A*, 2024, **12**, 21723-21731.
- L. Luo, K. Liang, Z. Khanam, X. C. Yao, M. Mushtaq, T. Ouyang, M. S. Balogun and Y. X. Tong, *Small*, 2024, 20, 2307103.
- P. H. Chen, W. Y. Zhou, Z. J. Xiao, S. Q. Li, H. L. Chen, Y. C. Wang, Z. B. Wang, W. Xi, X. G. Xia and S. S. Xie, *Energy Storage Materials*, 2020, 33, 298-308.
- 8. F. Xie, X. L. Sheng, Z. B. Ling, S. J. Hao, Q. Y. Zhang, M. Sun, G. T. Liu, F. Y. Diao and Y. Q. Wang, *Electrochimica Acta*, 2023, **470**, 143288.