Supplementary Information

Halide Vacancy Passivation in Cesium Lead Halide Perovskite

Nanocrystals with Mixed Halide Compositions: The Impact of

Prolonged Reaction Time

Yeongcheol Kim, ‡^{a,b} Seongwoo Cho, ‡^{a,c} Seohee Park,^{a,c} Min Ju Kim,^{a,d} Younghoon Kim,^e Gui-Min

Kim,^f Doh C. Lee,^f Sung Nam Lim,^{a,b,j} Shin Ae Song,^{a,b} Cheolsang Youn,^g Seongho Lee,^{b,i} Seong-Yong

Cho,^{b,d*} Sohee Jeong,^{c*} Seunghyun Lee,^{b,h*} and Ju Young Woo^{a,b,j*}

^a Autonomous Manufacturing & Process R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea

^b HYU-KITECH Joint Department, Hanyang University, Ansan 15588, Republic of Korea

^c Department of Energy Science (DOES), Center for Artificial Atoms, Institute of Energy Science and Technology

(SIEST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea

^d Department of Photonics and Nanoelectronics, Hanyang University ERICA, Ansan 15588, Republic of Korea

^e Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea

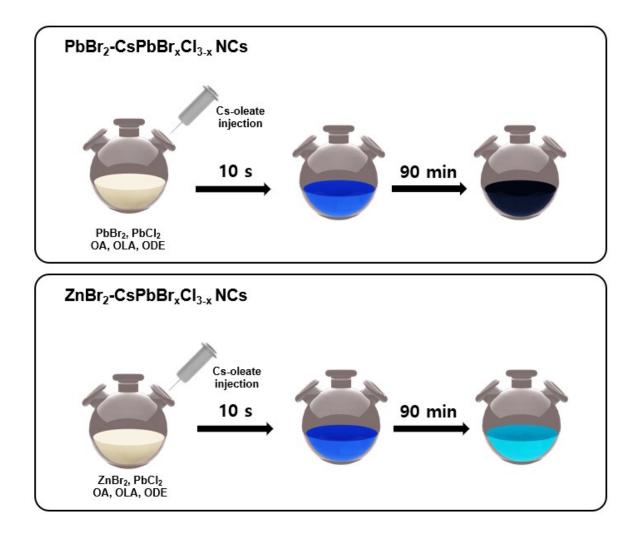
^f Department of Chemical and Biomolecular Engineering, KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

^g Reliability Research Center, FITI Testing & Research Institute, 79, Magokjungang 8-ro 3-gil, Gangseo-gu, Seoul, Republic of Korea

^h Department of Energy and Bio Sciences, Department of Applied Chemistry, Hanyang University ERICA, Ansan 15588, Republic of Korea

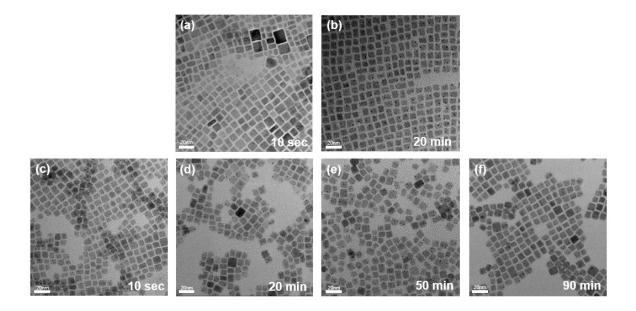
ⁱ Department of Applied Physics, Hanyang University, Ansan 15588, Republic of Korea

^j School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea


‡Y.K and **‡**S.C contributed equally

*Corresponding Authors

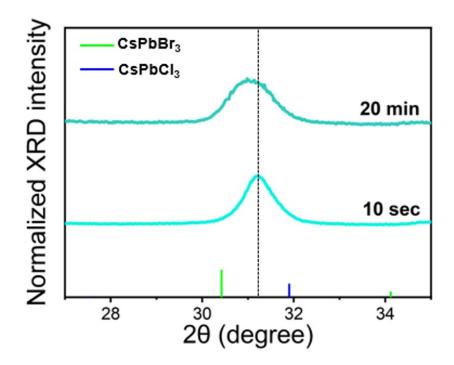
- Dr. Ju Young Woo (jywoo@kitech.re.kr)
- Prof. Seunghyun Lee (<u>leeshyun@hanyang.ac.kr</u>)


Prof. Sohee Jeong (<u>s.jeong@skku.edu</u>)

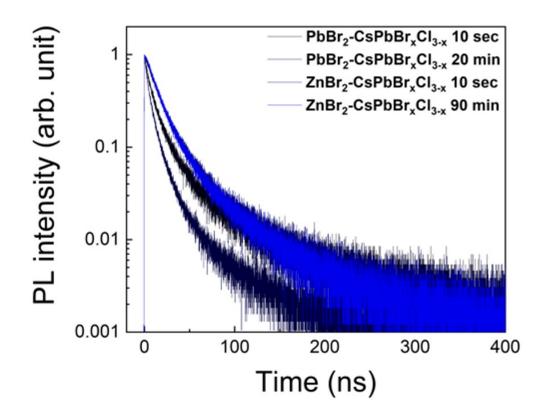
Prof. Seong-Yong Cho (<u>seongyongcho@hanyang.ac.kr</u>)

Scheme S1. Schematic illustration for the synthesis of (top) ZnBr₂-CsPbBr_xCl_{3-x} and (bottom)

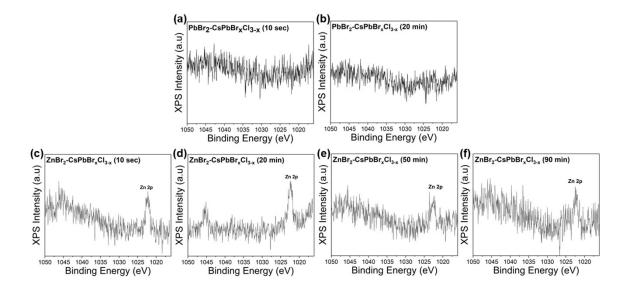
PbBr₂-CsPbBr_xCl_{3-x} NCs.

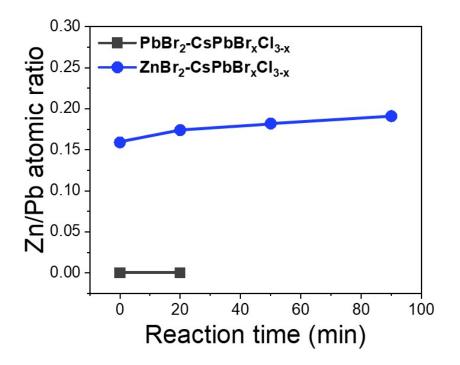

Fig. S1. TEM images of (a)-(b) PbBr₂-CsPbBr_xCl_{3-x} NCs and (c)-(f) ZnBr₂-CsPbBr_xCl_{3-x} NCs with

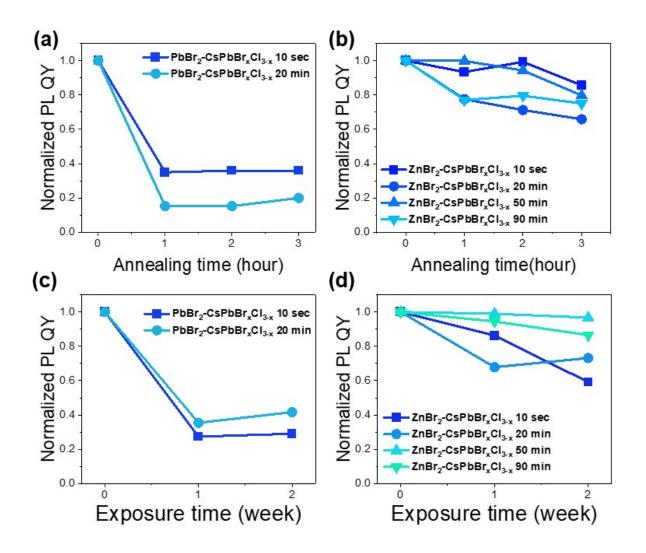
different reaction time.

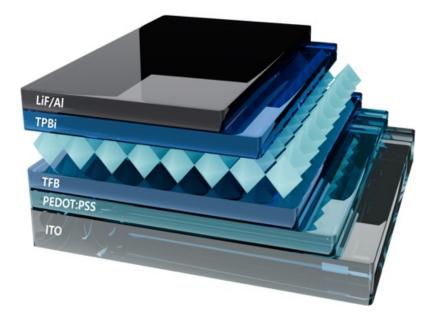

Table S1. Size analysis data of perovskite NCs with different reaction times. The sizes were

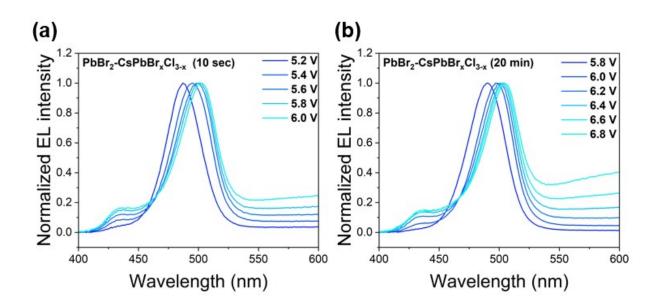
 measured based on TEM images

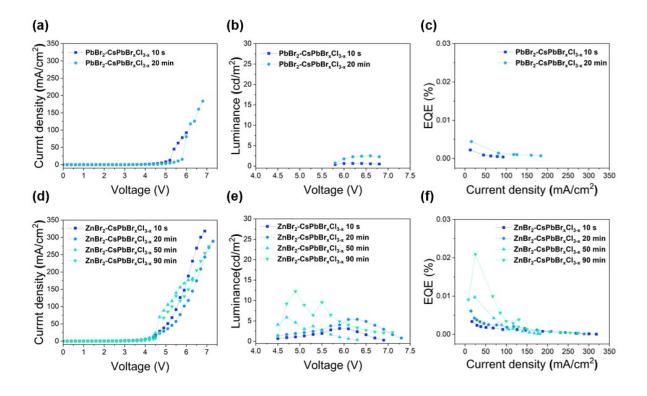

Perovskite NCs	Size		
PbBr ₂ -CsPbBr _x Cl _{3-x} 10 sec	10.5 ± 1.0		
PbBr ₂ -CsPbBr _x Cl _{3-x} 20 min	10.5 ± 1.8		
ZnBr ₂ -CsPbBr _x Cl _{3-x} 10 sec	10.5 ± 2.0		
ZnBr2-CsPbBrxCl3-x 20 min	10.5 ± 1.4		
ZnBr2-CsPbBrxCl3-x 50 min	10.5 ± 2.1		
ZnBr2-CsPbBrxCl3-x 90 min	$10.4~\pm~2.0$		


Fig. S2. XRD patterns of $PbBr_2$ -CsPbBr_xCl_{3-x} NCs with the reaction time of (bottom) 10 sec and (top) 20 min, respectively.


Fig. S3. TRPL decay curves of $ZnBr_2$ -CsPbBr_xCl_{3-x} NCs and PbBr₂-CsPbBr_xCl_{3-x} NCs with different reaction time.


Fig. S4. XPS Zn 2p spectrum of (a)-(b) PbBr₂-CsPbBr_xCl_{3-x} NCs and (c)-(f) ZnBr₂-CsPbBr_xCl_{3-x} NCs with different reaction time.


Fig. S5. Zn/Pb atomic ratio obtained from XPS anaylsis for $ZnBr_2$ -CsPbBr_xCl_{3-x} NCs and PbBr₂-CsPbBr_xCl_{3-x} NCs from XPS at different reaction times.


Fig. S6. (a-b) Thermal stability at 70°C and (c-d) air stability results of $CsPbBr_xCl_{3-x}$ NCs depending on reaction time.

Scheme S2. Schematic illustration for the structure of electroluminescent LED devices which employed in our study.

Fig. S7. Normalized EL spectra of LEDs based on $PbBr_2$ -CsPbBr_xCl_{3-x} NCs prepared with the reaction time of (a) 10 sec and (b) 20 min, respectively, at various operating voltage.

Fig. S8. EL performance of LEDs. The ZnBr₂-CsPbBr_xCl_{3-x} NCs of (a) current density-voltage curves, (b) luminance-voltage curves (c) EQE-current density curves and PbBr₂-CsPbBr_xCl_{3-x} NCs (d) current density-voltage curves, (e) luminance-voltage curves (f) EQE-current density curves.

Perovskite NCs	\mathbf{A}_1	$ au_1$	A_2	$ au_2$	A_3	$ au_3$	$ au_{ m avg}$
ZnBr ₂ -CsPbBr _x Cl _{3-x} 10 s	0.4	13.2	0.4	13.2	0.2	44.6	18.7
ZnBr2-CsPbBrxCl3-x 20 min	0.5	14.8	0.5	14.8	0.1	58.7	19.8
ZnBr2-CsPbBrxCl3-x 50 min	0.5	15.3	0.6	15.3	0.1	54.8	19.9
ZnBr2-CsPbBrxCl3-x 90 min	0.5	13.5	0.4	13.5	0.1	48.2	18.3
PbBr ₂ -CsPbBr _x Cl _{3-x} 10 s	0.2	1.8	0.6	8.5	0.2	29.8	11.5
PbBr ₂ -CsPbBr _x Cl _{3-x} 20 min	0.3	1.4	0.5	5.9	0.2	16.6	6.9

Table S2. Summary of TRPL decay data for perovskite nanocrystals with different reaction

times.