Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information -

Enhancing Ionic Conductivity in Li_{6+x}Ge_xP_{1-x}S₅Br: Impact of Li⁺ Substructure on Ionic Transport and Solid-State Battery Performance

Vasiliki Faka^a, Bibek Samanta^{b,c}, Martin A. Lange^{a,d}, Bianca Helm^e, Xabier Martinez de Irujo Labalde^a, Niklas Kierdorf^a, Lukas Ketter^{a,c}, Emmanuelle Suard^f, Marvin A. Kraft^{a,d}, Brian E. Francisco^g, Michael Ryan Hansen^{*b,c} and Wolfgang G. Zeier^{*a,d}

^aInstitute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.

^bInstitute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.

^cInternational Graduate School BACCARA, Wilhelm-Schickard-Straße 8, 48149 Münster, Germany.

^dInstitute of Energy Materials and Devices (IMD), IMD 4: Helmholtz-Institut Münster Ionics in Energy Storage, Forschungszentrum Jülich GmbH, 48149 Münster, Germany.

^eBavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany.

^fInstitut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9, France.

^gSolid Power Inc, 486 S Pierce Ave Ste E, Louisville, Colorado, 80027, United States.

E-mail addresses of corresponding authors:

*wzeier@uni-muenster.de

*mhansen@uni-muenster.de

Figure S1. X-ray powder diffraction data and the corresponding Rietveld refinement of the substituted $Li_{6+x}Ge_xP_{1-x}S_5Br$. The gray circles represent the experimental data and the red line shows the calculated pattern. The dark blue line denotes the difference profile. The green vertical lines denote the Bragg reflection position from the reference pattern, while the blue vertical lines denote the Bragg reflection position from the side phase of LiBr.

The following tables S1 – S6 include all the crystallographic information extracted Rietveld refinements against X-ray diffraction data. The composition in the following tables for the $Li_{6+x}Ge_xP_{1-x}S_5Br$ substitution series corresponds to the $x_{refined}$ content.

Table S1: Crystallographic data of Li₆PS₅Br obtained from Mo-X-Ray diffraction data. Statistical standard deviations of the refined parameters are shown in parentheses.

a = 9.98	344(2) Å, Spa	λ_{Mo-Ka1} = 0.7093 Å							
1.6(1) v	1.6(1) wt.% LiBr								
$R_{\rm wp} = 2.$	65%, GoF = 1	.03							
Atom	Wyckoff	X	У	Ζ	Occupancy	B _{eq}			
	site								
LiT5	48h	0.3071	0.0251	0.6929	0.4407	3			
LiT5a	24g	0.25	0.017	0.75	0.1186	3			
Br1	4 <i>a</i>	0	0	1	0.780(5)	3.0(1)			
Br2	4 <i>d</i>	0.25	0.25	0.75	0.120(5)	1.9(2)			
P1	4 <i>b</i>	0	0	0.5	1	1.6(1)			
S1	4 <i>d</i>	0.25	0.25	0.75	0.780(5)	1.9(2)			
S2	16 <i>e</i>	0.1195(2)	-0.1195(2)	0.6195(2)	1	2.28(7)			
S3	4 <i>a</i>	0	0	1	0.120(5)	3.0(1)			

Table S2: Crystallographic data of $Li_{6.04}Ge_{0.04}P_{0.96}S_5Br$ obtained from Mo-X-Ray diffraction data. Statistical standard deviations of the refined parameters are shown in parentheses.

<i>a</i> = 10.0)188(2) Å, Spa	$\lambda_{Mo-Ka1} = 0.7093$ Å						
1.5(1) v	1.5(1) wt.% LiBr							
$R_{wp} = 2.$	51%; GoF = 0	.92						
Atom	Wyckoff	X	у	Ζ	Occupancy	B _{eq}		
	site							
LiT5	48h	0.3071	0.0251	0.6929	0.4407	3		
LiT5a	24g	0.25	0.017	0.75	0.1186	3		
Br1	4 <i>a</i>	0	0	1	0.899(8)	4.2(1)		
Br2	4 <i>d</i>	0.25	0.25	0.75	0.101(8)	1.4(2)		
P1	4b	0	0	0.5	0.957(8)	0.85(7)		
Ge1	4b	0	0	0.5	0.043(8)	0.85(7)		
S1	4 <i>d</i>	0.25	0.25	0.75	1.3(1)	1.4(2)		
S2	16 <i>e</i>	0.1190(2)	-0.1190(2)	0.6190(2)	1	2.23(8)		
S3	4 <i>a</i>	0	0	1	0.101(8)	4.2(1)		

<i>a</i> = 10.0)309(8) Å, Spa		λ_{Mo-Ka1} = 0.7093 Å						
0.86(4)	0.86(4) wt.% LiBr								
$R_{\rm wp}=0.$	98%; GoF = 1	.19							
Atom	Wyckoff	X	у	Ζ	Occupancy	B _{eq}			
	site								
LiT5	48h	0.3071	0.0251	0.6929	0.4407	3			
LiT5a	24g	0.25	0.017	0.75	0.1186	3			
Br1	4 <i>a</i>	0	0	1	0.896(2)	3.65(5)			
Br2	4 <i>d</i>	0.25	0.25	0.75	0.104(2)	1.66(6)			
P1	4b	0	0	0.5	0.896(3)	0.71(6)			
Ge1	4b	0	0	0.5	0.104(3)	0.71(6)			
S1	4 <i>d</i>	0.25	0.25	0.75	0.896(2)	1.66(6)			
S2	16 <i>e</i>	0.1190(1)	-0.1190(1)	0.6190(1)	1	2.15(3)			
S3	4 <i>a</i>	0	0	1	0.104(2)	3.65(5)			

Table S3: Crystallographic data of $Li_{6.10}Ge_{0.10}P_{0.90}S_5Br$ obtained from Mo-X-Ray diffraction data. Statistical standard deviations of the refined parameters are shown in parentheses.

Table S4: Crystallographic data of $Li_{6.16}Ge_{0.16}P_{0.84}S_5Br$ obtained from Mo-X-Ray diffraction data. Statistical standard deviations of the refined parameters are shown in parentheses.

<i>a</i> = 10.0)531(2) Å, Spa	$\lambda_{Mo-Ka1} = 0.7093 \text{ Å}$							
1.12(5)	1.12(5) wt.% LiBr								
<i>R</i> _{wp} = 1.	03%; GoF = 1	.23							
Atom	Wyckoff	X	У	Ζ	Occupancy	B _{eq}			
	site								
LiT5	48h	0.3071	0.0251	0.6929	0.4407	3			
LiT5a	24g	0.25	0.017	0.75	0.1186	3			
Br1	4 <i>a</i>	0	0	1	0.897(2)	3.80(6)			
Br2	4 <i>d</i>	0.25	0.25	0.75	0.103(2)	1.85(7)			
P1	4b	0	0	0.5	0.843(3)	0.75(6)			
Ge1	4 <i>b</i>	0	0	0.5	0.157(3)	0.75(6)			
S1	4 <i>d</i>	0.25	0.25	0.75	0.897(2)	1.85(7)			
S2	16 <i>e</i>	0.1193(1)	-0.1193(1)	0.6193(1)	1	2.12(3)			
S3	4 <i>a</i>	0	0	1	0.103(2)	3.80(6)			

<i>a</i> = 10.0)567(1) Å, Spa	$\lambda_{Mo-Ka1} = 0.7093$ Å							
0.95(5)	0.95(5) wt.% LiBr								
<i>R</i> _{wp} = 1.	12%; GoF = 1	.02							
Atom	Wyckoff	X	У	Ζ	Occupancy	B _{eq}			
	site								
LiT5	48h	0.3071	0.0251	0.6929	0.4407	3			
LiT5a	24g	0.25	0.017	0.75	0.1186	3			
Br1	4 <i>a</i>	0	0	1	0.904(3)	4.12(6)			
Br2	4 <i>d</i>	0.25	0.25	0.75	0.096(3)	1.85(8)			
P1	4 <i>b</i>	0	0	0.5	0.795(4)	0.95(6)			
Ge1	4 <i>b</i>	0	0	0.5	0.205(4)	0.95(6)			
S1	4 <i>d</i>	0.25	0.25	0.75	0.904(3)	1.85(8)			
S2	16 <i>e</i>	0.1198(1)	-0.1198(1)	0.6198(1)	1	2.38(4)			
S3	4 <i>a</i>	0	0	1	0.096(3)	4.12(6)			

Table S5: Crystallographic data of $Li_{6.20}Ge_{0.20}P_{0.80}S_5Br$ obtained from Mo-X-Ray diffraction data. Statistical standard deviations of the refined parameters are shown in parentheses.

Table S6: Crystallographic data of $Li_{6.31}Ge_{0.31}P_{0.69}S_5Br$ obtained from Mo-X-Ray diffraction data. Statistical standard deviations of the refined parameters are shown in parentheses.

<i>a</i> = 10.0)811(1) Å, S _l		λ_{Mo-Ka1} = 0.7093 Å						
1.65(6)	1.65(6) wt.% LiBr								
$R_{wp} = 1.$	01%; GoF =	1.21							
Atom	Wyckoff	X	У	Ζ	Occupancy	B _{eq}			
	site								
LiT5	48h	0.3071	0.0251	0.6929	0.4407	3			
LiT5a	24g	0.25	0.017	0.75	0.1186	3			
Br1	4 <i>a</i>	0	0	1	0.898(3)	3.90(6)			
Br2	4 <i>d</i>	0.25	0.25	0.75	0.102(3)	1.80(8)			
P1	4b	0	0	0.5	0.693(4)	0.96(6)			
Ge1	4b	0	0	0.5	0.307(4)	0.96(6)			
S1	4d	0.25	0.25	0.75	0.898(3)	1.80(8)			
S2	16 <i>e</i>	0.1203(1)	-0.1203(1)	0.6203(1)	1	1.89(4)			
S3	4 <i>a</i>	0	0	1	0.102(3)	3.90(6)			

Figure S2. Neutron powder diffraction data and the corresponding Rietveld refinement of the substituted $Li_{6+x}Ge_xP_{1-x}S_5Br$. The gray circles represent the experimental data and the red line shows the calculated pattern. The blue line denotes the difference profile. The green vertical lines denote the Bragg reflection position from the reference pattern.

The following tables S7 – S12 include all the crystallographic information extracted Rietveld refinements against neutron powder diffraction data. The composition in the following tables for the $Li_{6+x}Ge_xP_{1-x}S_5Br$ substitution series corresponds to the $x_{refined}$ content.

Table S7: Crystallographic data of $Li_{6}PS_{5}Br$ obtained from neutron powder diffraction data.Statistical standard deviations of the refined parameters are shown in parentheses.

a = 9.98	345(2) Å, Spac	$\lambda_{neutron} = 1.59289(1) \text{ Å}$							
1.54(9)	1.54(9) wt.% LiBr								
$R_{wp} = 3.$	38%, GoF = 0	.37; weighted	d Durbin-Wats	on = 1.06					
Atom	Wyckoff	X	У	Ζ	Occupancy	B _{eq}			
	site								
LiT5	48h	0.3098(7)	0.0270(2)	0.6902(2)	0.397(4)	3.8(2)			
LiT5a	24g	0.25	0.0270(8)	0.75	0.206(8)	3.8(2)			
Br1	4 <i>a</i>	0	0	1	0.80(8)	2.9(7)			
Br2	4 <i>d</i>	0.25	0.25	0.75	0.20(8)	1.87(8)			
P1	4b	0	0	0.5	1	1.36(5)			
S1	4 <i>d</i>	0.25	0.25	0.75	0.80(8)	1.87(8)			
S2	16e	0.1188(2)	-0.1188(2)	0.6188(2)	1	2.12(6)			
S3	4 <i>a</i>	0	0	1	0.20(8)	2.9(7)			

<i>a</i> = 10.0)188(2) Å, Spa	$\lambda_{neutron} = 1.59345(3) \text{ Å}$							
0.67(7)	0.67(7) wt.% LiBr								
$R_{\rm wp} = 3.$.27%; GoF = 0	.36; weighted	d Durbin-Wats	on = 1.21					
Atom	Wyckoff	X	у	Ζ	Occupancy	B _{eq}			
	site								
LiT5	48h	0.3082(8)	0.0233(9)	0.6918(8)	0.371(4)	3.5(2)			
LiT5a	24g	0.25	0.020(4)	0.75	0.203(7)	3.5(2)			
LiT2	48h	0.295(8)	0.093(8)	0.593(8)	0.031(5)	3.5(2)			
Br1	4 <i>a</i>	0	0	1	0.849(8)	3.27(7)			
Br2	4 <i>d</i>	0.25	0.25	0.75	0.151(8)	1.76(8)			
P1	4b	0	0	0.5	0.957(8)	1.18(5)			
Ge1	4b	0	0	0.5	0.043(8)	1.18(5)			
S1	4 <i>d</i>	0.25	0.25	0.75	0.849(8)	1.76(8)			
S2	16 <i>e</i>	0.1191(3)	-0.1191(3)	0.6191(3)	1	2.28(6)			
S3	4 <i>a</i>	0	0	1	0.151(8)	3.27(7)			

Table S8: Crystallographic data of $Li_{6.04}Ge_{0.04}P_{0.96}S_5Br$ obtained from neutron powder diffraction data. Statistical standard deviations of the refined parameters are shown in parentheses.

Table S9: Crystallographic data of $Li_{6.10}Ge_{0.10}P_{0.90}S_5Br$ obtained from neutron powder diffraction data. Statistical standard deviations of the refined parameters are shown in parentheses.

<i>a</i> = 10.0)310(1) Å, Spa	$\lambda_{neutron} = 1.59365(2) \text{ Å}$						
0.24(5) wt.% LiBr								
$R_{wp} = 3.$	28%; GoF = 0	.36; weighted	d Durbin-Wats	on = 1.22				
Atom	Wyckoff	Х	у	Ζ	Occupancy	B _{eq}		
	site							
LiT5	48h	0.3045(6)	0.0238(8)	0.6955(6)	0.362(5)	3.1(2)		
LiT5a	24g	0.25	0.020(4)	0.75	0.198(6)	3.1(2)		
LiT2	48h	0.292(5)	0.085(4)	0.585(4)	0.048(4)	3.1(2)		
Br1	4 <i>a</i>	0	0	1	0.864(8)	3.10(6)		
Br2	4 <i>d</i>	0.25	0.25	0.75	0.136(8)	1.77(8)		
P1	4b	0	0	0.5	0.896(3)	1.17(5)		
Ge1	4b	0	0	0.5	0.104(3)	1.17(5)		
S1	4 <i>d</i>	0.25	0.25	0.75	0.864(8)	1.77(8)		
S2	16 <i>e</i>	0.1195(3)	-0.1195(3)	0.6195(3)	1	2.08(6)		
S3	4 <i>a</i>	0	0	1	0.136(8)	3.10(6)		

<i>a</i> = 10.0)531(2) Å, Spa	$\lambda_{neutron} = 1.59351(3) \text{ Å}$						
0.57(6) wt.% LiBr								
<i>R</i> _{wp} = 3.	15%; GoF = 0	.35; weighted	d Durbin-Wats	son = 1.20				
Atom	Wyckoff	х	У	Z	Occupancy	B _{eq}		
	site							
LiT5	48h	0.3077(9)	0.026(1)	0.6923(9)	0.335(7)	3.2(2)		
LiT5a	24g	0.25	0.015(3)	0.75	0.251(7)	3.2(2)		
LiT2	48h	0.283(9)	0.069(6)	0.569(6)	0.040(4)	3.2(2)		
LiT4	16 <i>e</i>	0.15	0.15	0.15	0.041(9)	3.2(2)		
Br1	4 <i>a</i>	0	0	1	0.886(9)	3.62(7)		
Br2	4 <i>d</i>	0.25	0.25	0.75	0.114(9)	1.84(9)		
P1	4 <i>b</i>	0	0	0.5	0.843(3)	1.35(5)		
Ge1	4 <i>b</i>	0	0	0.5	0.157(3)	1.35(5)		
S1	4 <i>d</i>	0.25	0.25	0.75	0.886(9)	1.84(9)		
S2	16 <i>e</i>	0.1201(3)	-0.1201(3)	0.6201(3)	1	2.21(7)		
S3	4 <i>a</i>	0	0	1	0.114(9)	3.62(7)		

Table S10: Crystallographic data of $Li_{6.16}Ge_{0.16}P_{0.84}S_5Br$ obtained from neutron powder diffraction data. Statistical standard deviations of the refined parameters are shown in parentheses.

Table S11: Crystallographic data of $Li_{6.20}Ge_{0.20}P_{0.80}S_5Br$ obtained from neutron powder diffraction data. Statistical standard deviations of the refined parameters are shown in parentheses.

<i>a</i> = 10.0)567(1) Å, Spa	$\lambda_{neutron} = 1.59344(2) \text{ Å}$						
0.42(6) wt.% LiBr								
$R_{wp} = 3.$	22%; GoF = 0	.36; weighted	d Durbin-Wats	on = 1.20				
Atom	Wyckoff	Х	У	Ζ	Occupancy	$B_{ m eq}$		
	site							
LiT5	48h	0.3042(7)	0.0229(9)	0.6938(7)	0.348(6)	3.1(2)		
LiT5a	24 <i>g</i>	0.25	0.016(4)	0.75	0.210(6)	3.1(2)		
LiT2	48h	0.299(5)	0.075(4)	0.575(4)	0.050 (4)	3.1(2)		
LiT4	16 <i>e</i>	0.15	0.15	0.15	0.043(6)	3.1(2)		
Br1	4 <i>a</i>	0	0	1	0.877(8)	3.53(7)		
Br2	4 <i>d</i>	0.25	0.25	0.75	0.123(8)	1.84(8)		
P1	4 <i>b</i>	0	0	0.5	0.795(4)	1.21(5)		
Ge1	4 <i>b</i>	0	0	0.5	0.205(4)	1.21(5)		
S1	4 <i>d</i>	0.25	0.25	0.75	0.877(8)	1.84(8)		
S2	16 <i>e</i>	0.1200(3)	-0.1200(3)	0.6200(3)	1	2.19(7)		
\$3	4 <i>a</i>	0	0	1	0.123(8)	3.53(7)		

<i>a</i> = 10.0)811(1) Å, S _l	$\lambda_{neutron} = 1.59346(3) \text{ Å}$							
0.59(6) wt.% LiBr									
$R_{wp} = 3.$	10%; GoF =	0.34; weighte	ed Durbin-Wat	son = 1.25					
Atom	Wyckoff	X	У	Ζ	Occupancy	B eq			
	site								
LiT5	48h	0.3053(7)	0.0227(9)	0.6947(7)	0.333(6)	3.0(2)			
LiT5a	24g	0.25	0.014(4)	0.75	0.224(6)	3.0(2)			
LiT2	48h	0.303(6)	0.080(4)	0.580(4)	0.055(4)	3.0(2)			
LiT4	16 <i>e</i>	0.15	0.15	0.15	0.078(7)	3.0(2)			
Br1	4 <i>a</i>	0	0	1	0.874(8)	3.66(7)			
Br2	4 <i>d</i>	0.25	0.25	0.75	0.126(8)	1.81(9)			
P1	4b	0	0	0.5	0.693(4)	1.12(5)			
Ge1	4b	0	0	0.5	0.307(4)	1.12(5)			
S1	4 <i>d</i>	0.25	0.25	0.75	0.874(8)	1.81(9)			
S2	16 <i>e</i>	0.1202(3)	-0.1202(3)	0.6202(3)	1	2.02(7)			
S3	4a	0	0	1	0.126(8)	3.66(7)			

Table S12: Crystallographic data of $Li_{6.31}Ge_{0.31}P_{0.69}S_5Br$ obtained from neutron powder diffraction data. Statistical standard deviations of the refined parameters are shown in parentheses.

Figure S3. X-ray diffraction data of $Li_{6+x}Ge_xP_{1-x}S_5Br$ up to $x_N=1$. (a) The amount of side phases from $x_N(Ge) = 0$ to $x_N(Ge) = 0.35$ reveals the successful substitution of Ge(IV) into the argyrodite structure. (b) X-ray diffraction patterns for $x_N(Ge) > 0.4$ reveal the onset of LiBr, Li_2S and Li_4GeS_4 side phases in the Li_6PS_5Br structure. All patterns correspond to materials annealed at 550 °C for 2h, followed by natural cooling.

Figure S4. X-ray diffraction patterns of Li_7GeS_5Br . (a) Li_7GeS_5Br after ball milling revealing some crystallite content, which cannot be refined or assigned to the argyrodite structure. It consists of 67(2) wt.% Li_2S , 21(1) wt.% Ge and 12(3) wt.% LiBr. (b) Li_7GeS_5Br after 550 °C for 2h, consisting of 64.2(4) wt.% Li_4GeS_4 , 22.5(3) wt.% LiBr and 13.3(4) wt.% Li_2S .

Figure S5. Lattice parameters from XRD and NPD vs. refined x(Ge). Lattice parameters obtained from Rietveld refinements against X-ray diffraction data (open-colored circles) and neutron powder diffraction data (black crosses) demonstrate good agreement between the two refinement methods, confirming the reliability of the structural analysis.

Nuclear Magnetic Resonance Analysis

Figure S6. Solid-state ³¹P and ⁶Li MAS NMR for the substitution series of $Li_{6+x}Ge_xP_{1-x}S_5Br$. (a) Stacked ³¹P MAS NMR spectra of the $Li_{6+x}Ge_xP_{1-x}S_5Br$ substitution series recorded at spinning frequency of 25.0 kHz. (b) Relative contribution (area integral) of the different ³¹P resonance signals to the total fit. Higher number (vii,vi,...) indicates resonances at lower ppm. (c) Tentative deconvolution of the ⁶Li MAS NMR spectra of $x_R(Ge) = 0.10$ and $x_R(Ge) = 0.31$. (d) Trend in chemical shift of the highest intensity ⁶Li resonance.

Modified Bloembergen-Purcell-Pound (BPP) model for ⁷Li spin-lattice (T₁) relaxometry.

For Li-argyrodites, the shape of the ⁷Li T_1 -relaxation curve has been described using a modified BPP model as follows:

$$\frac{1}{T_1} = C \left(\frac{\tau_c}{1 + (\omega_0 \tau_c)^{1+\beta}} + \frac{4\tau_c}{1 + (2\omega_0 \tau_c)^{1+\beta}} \right), 0 < \beta \le 1 \dots (1)$$
$$\tau_c = \tau_0 \exp\left(\frac{E_{a,HT}}{k_B T}\right) \dots (2)$$
$$\beta = \frac{E_{a,HT}}{E_{a,HT}} \dots (3)$$

Where:

 T_1 = spin-lattice relaxation constant

C = a prefactor indicating the strength of dipolar and quadrupolar interactions leading to relaxation

 τ_c = motional correlation time

 ω_0 = angular Larmor frequency of ⁷Li at the given magnetic field strength

 β = a correction factor (asymmetry parameter) to the original BPP formula (developed for isotropic diffusion in liquids) which considers the deviation from ideality (β = 1) in solids due to different reasons like structural disorder, dimensionality of the jump processes *etc*.

 $E_{a,HT}$ = activation energy obtained from the high-temperature flank of the rate curve

 $E_{a,LT}$ = activation energy obtained from the low-temperature flank of the rate curve

The asymmetry parameter β reflects the difference in the activation barriers of the motional processes that dominates the high- and low-temperature flank of the rate curve, thus accounting for the asymmetric nature of the rate curves in solid ion conductors. A more detailed discussion on the modified BPP formula can be found in the article by Wankmiller *et al.*¹

Figure S7. ⁷Li spin-lattice (T₁) relaxation data for Li₆PS₅Br. Arrhenius plot of the data with a modified-BPP fit ($E_{\alpha,HT} = 0.19 \text{ eV}$, $\beta = 0.37$).

Figure S8. Arrhenius plot of the motional correlation rates $(1/\tau_c)$. The trend in the motional correlation rates (calculated using $E_{a,HT}$ and $\tau_{c,0}$ obtained from the modified BPP fits) at different temperatures seems to follow the Br-/S²-site disorder and the T2-T2 distance.

Figure S9. T2-T2 jump distance. The trend in T2-T2 jump distance with increasing Ge(IV) content obtained from Rietveld refinements.

Table S13: Different parameters obtained from modified BPP fits of the ⁷Li T₁-relaxation data for the samples with different $x_R(Ge)$. $E_{a, HT}$ and $E_{a, LT}$ were obtained from high- and lowtemperature flank of the modified-BPP fits, respectively. The asymmetry parameter β reflects the difference between the abovementioned two activation energies.

x _R (Ge)	<i>Е</i> а, нт / eV	<i>Е</i> а, _{LT} / eV	β	C / s ⁻²	T _{max} / K	<i>R</i> _{max} / s ⁻¹	1/τ _C at 300 K / s ⁻¹
0.00	0.187	0.069	0.37	6.78x10 ⁹	280	15.13	1.81 x10 ¹²
0.04	0.197	0.052	0.26	6.52x10 ⁹	288	15.75	1.43 x10 ¹²
0.10	0.192	0.059	0.31	7.03x10 ⁹	294	16.38	1.24x10 ¹²
0.16	0.172	0.064	0.37	7.72x10 ⁹	294	17.25	7.43 x10 ¹¹
0.20	0.176	0.063	0.36	7.94x10 ⁹	296	17.87	7.81 x10 ¹¹
0.31	0.187	0.074	0.39	9.16x10 ⁹	308	20.19	9.37 x10 ¹¹

Figure S10. T-dependent PEIS. Representative Arrhenius plots of the temperature-dependent ionic conductivity measurements, measured in a range from -100 °C to 25 °C for the $Li_{6+x}Ge_xP_{1-x}S_5Br$ substitution series.

Half-Cell testing

Figure S11. Charge-discharge profiles and Coulomb efficiency. No additional processes are observed for the first ten cycles of NCM–83 based half-cells with (a) Li_6PS_5Br and (b) $Li_{6.31}Ge_{0.31}P_{0.69}S_5Br$ as solid electrolytes. (c) Development of the Coulomb efficiency for half-

cells with either Li_6PS_5Br or $Li_{6.31}Ge_{0.31}P_{0.69}S_5Br$ as solid electrolyte. (d, e) Comparison of the first charge and discharge profiles at each C-rate during the rate tests reveal that no additional processes occur at higher cycling currents in half cells with (d) Li_6PS_5Br and (e) $Li_{6.31}Ge_{0.31}P_{0.69}S_5Br$ $_5Br$ as solid electrolytes.

Figure S12. Particle size distribution of Li₆PS₅Br and Li_{6.31}Ge_{0.31}P_{0.69}S₅Br. (a) The volumetric cumulative distribution for both solid electrolytes shows that both solid electrolytes have similar particle size distributions within uncertainty, as calculated from triplicate measurements. The respective distribution density histograms of (b) Li₆PS₅Br and (c) Li_{6.31}Ge_{0.31}P_{0.69}S₅Br show that Li₆PS₅Br contains slightly less agglomerates of smaller particle size and some larger agglomerates, as represented by the D10 = 1.3 µm, D50 = 10.1 µm and D90 = 30.1 µm, compared to the respective values of D10 = 1.1 µm, D50 = 8.1 µm and D90 = 25.0 µm. The y-axis is plotted in logarithmic scale to emphasize that the differences are within experimental uncertainty.

Figure S13. Scanning electron microscopy images of Li_6PS_5Br (top) and $Li_{6.31}Ge_{0.31}P_{0.69}S_5Br$ (below) in two different magnifications. The SEM images show no significant differences between the investigated materials.

Figure S14. Virtual microstructures. The voxel representation of 3 composite structures as used as structural input in the resistor network model, consisting of a 46:54 volume fraction of NCM–83:SE. Three composite structures were used in analogy to the experimental triplicate measurements, in order to evaluate the uncertainties of the effective ionic conductivities.

Table 14: Resistor network model. The values of electronic and ionic conductivity used for the solid electrolytes and NCM–83 as input parameters. The effective ionic conductivity (σ_{eff}) corresponds to the effective conductivities of the virtual composites as extracted from the model as output parameters.

Input			Mean effective conductivity		
σ _{NCM} / mS [.] cm ⁻¹	σ _{se} / mS∙cm⁻¹	σ _{comp1} / mS [.] cm ⁻¹	σ _{comp2} / mS [.] cm ⁻¹	σ _{comp3} / mS [.] cm ⁻¹	σ _{eff} / mS [.] cm ⁻¹
5.22	10 ⁻¹⁰⁰	0.937	0.902	0.939	0.92 ± 0.02
10 ⁻¹⁰⁰	3.8	0.450	0.439	0.441	0.443 ± 0.006
10 ⁻¹⁰⁰	0.8	0.095	0.092	0.093	0.093 <u>+</u> 0.002

Figure S15. Partial ionic transport in the composite. (a) Nyquist plots show the lower resistance of $Li_{6.31}Ge_{0.31}P_{0.69}S_5Br$ vs. Li_6PS_5Br . (b) A schematic representation of the T-type transmission line model used to fit the impedance data. (c) Comparison of the effective ionic conductivity values as obtained from (i) fitting the T-type transmission line model against impedance data, (ii) DC polarization measurements. The effective conductivity of $Li_{6.31}Ge_{0.31}P_{0.69}S_5Br$ in the composite is higher than Li_6PS_5Br , confirming the indication that the enhanced performance of $Li_{6.31}Ge_{0.31}P_{0.69}S_5Br$ is attributed to its enhanced transport properties compared to Li_6PS_5Br .

REFERENCES

(1) Wankmiller, B.; Hansen, M. R. Observation of Li+ Jumps in Solid Inorganic Electrolytes over a Broad Dynamical Range: A Case Study of the Lithium Phosphidosilicates Li₈SiP₄ and Li₁₄SiP₆. J. Magn. Reson. Open **2023**, 14–15, 100098. https://doi.org/10.1016/j.jmro.2023.100098.