Supporting Information

Rational Design of Two-Dimensional Metal-Organic Framework with Transition Metal Support for High-Efficiency Bifunctional Oxygen Electrocatalysis

Lijuan Wang^{a, #}, Anyang Wang^{b, #}, Xuhao Wan^b, Wei Yu^c, Xiting Wang^{b, d*}, Zhen Li^e, Li Li^e, Yuzheng Guo^{b, c}, Zhaofu Zhang^{a, f*}, Yan Zhao^{a, g*}

^a The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, China.

^b School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China.

^c School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.

^d Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China.

^e International Joint Laboratory of Advanced Bulk Nanomaterials for Innovative Applications, Harbin Engineering University, Harbin 150001, China.

^f Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration, Wuhan University, Wuhan 430072, China.

^g College of Materials Science and Technology, Sichuan University, Chengdu 610065, China.

[#]*These authors contribute equally to the work and should be considered co-first authors*

* Corresponding author. E-mail: zhaofuzhang@whu.edu.cn E-mail: wangxiting@casisd.cn E-mail: yan2000@whu.edu.cn

Fig.S1 KPOINTS convergence test for Fe-HITT

Fig. S2 (a) Comparison diagram of adsorption energy; (b) OER free energy diagram of Fe-MITT in $1 \times 1 \times 1$ and $2 \times 2 \times 1$ k-point grid for Brillouin zone sampling.

Fig. S3 (a) Top and (b) side views of M-HITT.

M-HITT	Magnetic moment (µB)	Lattice constant (Å)	Relative energy (eV)
Ti	0.30	26.58	-3.48
V	7.00	26.48	-4.34
Cr	1000	26.41	-5.4
Mn	9.30	26.25	-4.29
Fe	6.66	26.14	0
Co	3.00	25.90	3.49
Ni	0.3	25.89	8.33
Cu	1.43	26.24	17.6
Zr	0.02	27.07	-5.12
Nb	3.68	26.88	-5.55
Мо	6.00	26.76	-5.27
Tc	8.93	26.68	-2.64
Ru	4.64	26.42	1.02
Rh	2.06	26.40	4.84
Pd	0	26.40	10.89
Ag	0.17	26.45	24.38
Hf	2.57	26.98	-9.49
Re	8.95	26.59	-6.86
Os	0	26.44	-5.05
Ir	2.84	26.44	-0.13
Pt	0	26.45	6.41
Au	0	26.45	19.73

Table S1. The lattice constant, magnetic moment, and relative energy of M-HITT.

M-HITT	$E_{NTM/MOF}(eV)$	$E_{MOF} (\mathrm{eV})$	$E_{TM-single} \left(eV \right)$	$E_{form}(eV)$
Ti	-663.31	-620.87	-8.30	-5.85
V	-664.17	-620.87	-9.52	-4.91
Cr	-665.23	-620.87	-9.95	-4.85
Mn	-664.12	-620.87	-9.17	-5.25
Fe	-659.83	-620.87	-8.55	-2.40
Co	-656.34	-620.87	-7.38	-4.43
Ni	-651.5	-620.87	-5.87	-4.34
Cu	-642.23	-620.87	-4.24	-2.88
Zr	-664.95	-620.87	-8.95	-5.74
Nb	-665.38	-620.87	-10.78	-4.06
Мо	-665.1	-620.87	-11.46	-3.28
Tc	-662.47	-620.87	-10.89	-2.97
Ru	-658.81	-620.87	-9.79	-2.85
Rh	-654.99	-620.87	-7.83	-3.54
Pd	-648.94	-620.87	-5.80	-3.56
Ag	-635.45	-620.87	-3.21	-1.65
Hf	-669.32	-620.87	-10.33	-5.82
Re	-666.69	-620.87	-13.00	-2.27
Os	-664.88	-620.87	-11.84	-2.83
Ir	-659.96	-620.87	-9.56	-3.47
Pt	-653.42	-620.87	-6.86	-3.99
Au	-640.10	-620.87	-3.88	-2.53

Table S2. The relevant data involved in the calculation of the formation energy.

M-HITT	$E_{form}(eV)$	п	$U^o_{\it diss-bulk}$	$U_{diss}(eV)$
Ti	-5.85	2	-1.63	1.30
V	-4.91	2	-1.18	1.28
Cr	-4.85	2	-0.91	1.52
Mn	-5.25	2	-1.19	1.44
Fe	-2.4	2	-0.45	0.75
Co	-4.43	2	-0.28	1.94
Ni	-4.34	2	-0.26	1.91
Cu	-2.88	2	0.34	1.78
Zr	-5.74	4	-1.45	-0.02
Nb	-4.06	3	-1.10	0.25
Mo	-3.28	3	-0.20	0.89
Tc	-2.97	2	0.40	1.89
Ru	-2.85	2	0.46	1.89
Rh	-3.54	2	0.60	2.37
Pd	-3.56	2	0.95	2.73
Ag	-1.65	1	0.80	2.45
Hf	-5.82	4	-1.55	-0.10
Re	-2.27	3	0.30	1.06
Os	-2.83	8	0.84	1.19
Ir	-3.47	3	1.16	2.32
Pt	-3.99	2	1.18	3.18
Au	-2.53	3	1.50	2.34

Table S3. The relevant data involved in the calculation of the dissolution potentials.

Fig. S4 Variations of energy and temperature versus the AIMD simulation time for M-HITT, the simulation lasts for 10 ps at 300 K.

Fig.S5 Density of states of (a) Co-HITT and (b) Rh-HITT computed by HSE functional.

Fig. S6 Density of states of M-HITT.

Correspondingly, the free energy changes of the four elementary steps can be calculated using eqn (1)-(4).

$$\Delta G_A = G_{*OH} + \frac{1}{2}G_{H_2} - G_* - G_{H_2O} - \Delta_{pH} - eU \setminus \text{*MERGEFORMAT}$$

(1)

$$\Delta G_{B} = G_{*O} + \frac{1}{2}G_{H_{2}} - G_{*OH} - \Delta_{pH} - eU \land * \text{MERGEFORMAT(2)}$$

$$G_{C} = G_{*OOH} + \frac{1}{2}G_{H_{2}} - G_{*O} - G_{H_{2}O} - \Delta_{pH} - eU \land *$$

MERGEFORMAT (3)

$$\Delta G_D = G_{O_2} + \frac{1}{2}G_{H_2} - G_{*OOH} - \Delta_{pH} - eU * \text{MERGEFORMAT}$$

(4)

where G_{H_2O} is to simulate liquid H₂O with gaseous H₂O at 0.035 bar pressure. In the above formula, considering that $1/2H_2 \leftrightarrow H^+ + e^-$ reaches equilibrium at standard atmospheric pressure, $G_{(H^++e^-)}$ is replaced by $1/2G_{H_2}$, and E is calculated at 1 bar. The electron structure of O₂ is relatively complex, and its free energy cannot be accurately calculated by DFT. The total free energy of the water-resolved hydrogen reaction is 4.92 eV, and the free energy of O₂ can be obtained indirectly from the equation of water-resolved hydrogen reaction.

The adsorption free energies of *OH, *O, and *OOH, respectively, which can be defined as eqn (5)-(7).

$$\Delta G_{*_{OH}} = G_{*_{OH}} - G_{*} - (G_{H_{2}O} - \frac{1}{2}G_{H_{2}}) \setminus \text{* MERGEFORMAT (5)}$$

$$\Delta G_{*_{O}} = G_{*_{O}} - G_{*} - (G_{H_{2}O} - G_{H_{2}}) \quad \setminus \text{* MERGEFORMAT (6)}$$

$$\Delta G_{*_{OOH}} = G_{*_{OOH}} - G_{*} - (2G_{H_{2}O} - \frac{3}{2}G_{H_{2}}) \setminus \text{* MERGEFORMAT (7)}$$

(7)

where * represents the catalyst, G* is the free energy of M-HITT when no species is adsorbed on the surface of the catalyst. ΔG_{*OH} , ΔG_{*O} and ΔG_{*OOH} are the free energy of *OH, *O and *OOH adsorbed on the surface, respectively. G_{H_2O} and G_{H_2} is the free energies of H₂O and H₂.

The standard free energy change in OER and ORR processes is -4.92 eV, and the reaction goes through four basic reaction steps. Under ideal conditions, the ORR output voltage for each step of electron transfer should be the average value 1.23 V.

M-HITT	$E_{ZPE} \left(\mathrm{eV} \right)$	$G\left(\mathrm{eV}\right)$
Ti	0.04	-692.63
V	0.05	-693.52
Cr	0.05	-693.53
Mn	0.06	-691.34
Fe	0.05	-686.39
Co	0.09	-681.85
Ni	0.00	-675.54
Cu	-0.03	-666.30
Zr	0.03	-694.61
Nb	0.05	-696.01
Мо	0.06	-694.95
Tc	0.06	-691.96
Ru	0.06	-686.78
Rh	0.03	-680.94
Pd	-0.01	-672.71
Ag	-0.04	-659.87
Hf	0.03	-699.07
Re	0.06	-696.91
Os	0.06	-693.39
Ir	0.04	-686.18
Pt	0.02	-677.50
Au	-0.06	-663.76

Table S4. Calculated zero-point energies and Gibbs free energies of *O on M-HITT.

M-HITT	$E_{ZPE} (eV)$	<i>G</i> (eV)
Ti	0.28	-693.16
V	0.30	-693.69
Cr	0.32	-693.67
Mn	0.29	-691.76
Fe	0.30	-687.54
Co	0.30	-683.27
Ni	0.25	-677.74
Cu	0.23	-668.71
Zr	0.27	-695.97
Nb	0.28	-696.09
Мо	0.30	-694.71
Tc	0.31	-691.66
Ru	0.31	-687.17
Rh	0.29	-682.39
Pd	0.23	-674.92
Ag	0.24	-662.32
Hf	0.26	-700.17
Re	0.32	-696.74
Os	0.33	-692.92
Ir	0.30	-687.16
Pt	0.25	-679.37
Au	0.21	-666.08

Table S5. Calculated zero-point energies and Gibbs free energies of *OH on M-HITT.

M-HITT	$E_{ZPE} \left(\mathrm{eV} \right)$	$G\left(\mathrm{eV}\right)$
Ti	0.35	-690.11
V	0.35	-690.30
Cr	0.35	-690.50
Mn	0.34	-688.74
Fe	0.34	-684.46
Co	0.38	-680.29
Ni	0.32	-674.81
Cu	0.26	-665.94
Zr	0.35	-691.83
Nb	0.32	-691.57
Мо	0.34	-691.36
Tc	0.39	-690.35
Ru	0.29	-684.34
Rh	0.34	-679.42
Pd	0.28	-672.05
Ag	0.26	-659.71
Hf	0.37	-697.54
Re	0.36	-695.73
Os	0.41	-691.85
Ir	0.34	-684.27
Pt	0.31	-676.55
Au	0.27	-663.62

Table S6. Calculated zero-point energies and Gibbs free energies of *OOH on M-HITT.

M-HITT	$\Delta G_{*OH}(\mathrm{eV})$	$\Delta G_{*O} (\mathrm{eV})$	$\Delta G_{*OOH} (eV)$
Ti	-1.41	-0.88	1.64
V	-1.08	-0.91	2.30
Cr	-0.01	0.14	3.17
Mn	0.81	1.22	3.82
Fe	0.73	1.87	3.81
Co	1.51	2.94	4.49
Ni	2.20	4.40	5.13
Cu	1.96	4.37	4.73
Zr	-2.57	-1.22	1.56
Nb	-2.27	-2.18	2.26
Mo	-1.17	-1.42	2.18
Tc	-0.76	-1.05	0.56
Ru	0.08	0.47	2.91
Rh	1.04	2.49	4.00
Pd	2.47	4.67	5.33
Ag	1.57	4.02	4.10
Hf	-2.41	-1.31	0.22
Re	-1.61	-1.79	-0.61
Os	0.40	-0.07	1.47
Ir	1.24	2.22	4.13
Pt	2.49	4.36	5.30
Au	2.46	4.78	4.87

Table S7. The adsorption energies of *OH, *O and *OOH (ΔG_{*OH} , ΔG_{*O} and ΔG_{*OOH}).

M-HITT	d _{TM-OH} (A)	d _{TM-O} (A)	d _{TM-OOH} (A)
Ti	1.83	1.64	1.84
V	1.79	1.60	1.80
Cr	1.80	1.58	1.77
Mn	1.85	1.57	1.87
Fe	1.83	1.63	1.83
Co	1.87	1.68	1.86
Ni	1.94	1.83	2.03
Cu	1.96	1.93	2.96
Zr	1.95	1.78	1.98
Nb	1.91	1.72	1.91
Мо	1.89	1.69	1.87
Tc	1.87	1.66	1.68
Ru	1.91	1.71	1.74
Rh	1.96	1.80	1.95
Pd	2.12	1.94	2.27
Ag	2.25	2.23	3.01
Hf	1.92	1.79	2.02
Re	1.89	1.71	1.73
Os	1.91	1.73	1.72
Ir	1.97	1.81	1.94
Pt	2.11	1.91	2.92
Au	2.37	2.42	3.22

Table S8. The bond lengths of *O, *OH,*OOH on M-HITT.

Cr-HITT

Co-HITT

Zr-HITT

Tc-HITT

Pd-HITT

Re-HITT

Pt-HITT

Fig. S7 Differential charge diagram of M-HITT adsorption intermediates (*O, *OH, *OOH from left to right).

Fig. S8 Charge transfer on TM after adsorption of *OH, *O and *OOH by M-HITT.

Fig. S9 The structures of intermediates (*OH, *O, and *OOH) of OER and ORR adsorbed on M-HITT.

Table S9. The free energy changes of each elementary step (ΔG_A , ΔG_B , ΔG_C and ΔG_D) and the overpotential of OER and ORR (η_{OER} and η_{ORR}).

	$\Delta G_A (\mathrm{eV})$	$\Delta G_B (\mathrm{eV})$	$\Delta G_C (eV)$	$\Delta G_D ({ m eV})$	$\eta_{\scriptscriptstyle OER}$ (V)	$\eta_{_{ORR}}$ (V)
Ti	-1.41	0.53	2.52	3.28	2.05	2.64
V	-1.08	0.17	3.22	2.61	1.99	2.31
Cr	-0.01	0.14	3.03	1.75	1.80	1.24
Mn	0.81	0.41	2.60	1.10	1.37	0.82
Fe	0.73	1.14	1.94	1.11	0.71	0.50
Co	1.51	1.42	1.55	0.43	0.32	0.80
Ni	2.20	2.20	0.72	-0.21	0.97	1.44
Cu	1.96	2.41	0.36	0.19	1.18	1.04
Zr	-2.57	1.35	2.78	3.36	2.13	3.80
Nb	-2.27	0.09	4.44	2.66	3.21	3.50
Mo	-1.17	-0.24	3.60	3.74	2.37	2.40
Tc	-0.76	-0.29	1.61	4.36	3.13	1.99
Ru	0.08	0.39	2.44	2.01	1.21	1.15
Rh	1.04	1.45	1.51	0.92	0.28	0.31
Pd	2.47	2.20	0.66	-0.41	1.24	1.64
Ag	1.57	2.46	0.16	0.74	1.23	0.49
Hf	-2.41	1.10	1.53	4.70	3.47	3.64
Re	-1.61	-0.18	1.18	5.53	4.30	2.84
Os	0.40	-0.47	1.54	3.45	2.22	1.70
Ir	1.24	0.98	1.91	0.79	1.24	0.44
Pt	2.49	1.87	0.94	-0.38	1.26	1.63
Au	2.46	2.32	0.09	0.05	1.23	1.18

Fig. S10 The OER free energy diagrams of M-HITT.

Fig. S11 The partial density of states (PDOS) of d orbitals for M-HITT. The d-band centers (ε_d) are also labeled for 3d TM, from Ti to Cu; 4d TM, from Zr to Ag; and 5d TM, from Hf to Au. The Fermi level (E_F) is set to 0 eV. Different fill colors (red, blue, and purple) represent different periods (fourth, fifth and sixth periods).

Fig. S12 -COHP between TM centers (from Ti to Au) and OH intermediate. The right and left sides represent the bonding and antibonding contributions, respectively.