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Fig. S1 The Rietveld refinement of (a) 0.50 wt% Ti3C2Tx/ Yb0.4Co3.96Ti0.04Sb12 and (b) 

0.75 wt% Ti3C2Tx/ Yb0.4Co3.96Ti0.04Sb12 
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Fig. S2 (a) Powder XRD pattern of Ti3C2Tx phase (b) Variation of 

lattice parameters with Ti3C2Tx fraction 

Fig. S3 BSE micrograph (a) and elemental mapping of (b) Sb, (c) Co, (d) 

C, (e) Ti, and (f) Yb elements in 0.25 wt % Ti3C2Tx 
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Table S1 

 
 
 

  

 

 

 

 

 

 

Composition d 

(gcm-3) 

Lattice constant 

a (Å) 

Volume 

(Å3) 

Yb0.4Co3.96Ti0.04Sb12 7.74 (> 98 %) 9.049(0) 740.97 

0.25 wt % Ti3C2Tx 7.59 (> 98 %) 9.040(8) 738.76 

0.50 wt % Ti3C2Tx 7. 55 (> 98 %) 9.039(7) 738.68 

0.75 wt % Ti3C2Tx 7.52 (> 98 %) 9.036(1) 737.81 

Fig. S4 BSE micrograph (a) and elemental mapping of (b) Sb, (c) Co, (d) Yb, (e) C, 

(f) O, and (g) Ti elements in 0.75 wt % Ti3C2Tx. (h) EDS spectra 

Fig. S5 Secondary electron micrograph of Ti3C2Tx layers 
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Table S2: Quantitative analysis of Sb3d, Sb3p and Ti3p energy levels 

  

 

 

Table S3: Quantitative analysis of Co2p energy level 

 

 

 

 

 

 

 

 

Sample Sb3d - energy level (eV) Sb3p - energy level (eV) Ti3p - 

energy 

level 
Sb3d5/2 Sb3d3/2 Sb3p3/2 Sb3p1/2 

Yb0.4Co3.96Ti0.04Sb12 527.66 529.83 537.13 539.02 811.95 765.95 - 

0.25 wt % Ti3C2Tx 527.84 530.13 537.25 539.29 813.14 766.75 33.99 

0.50 wt % Ti3C2Tx 528.47 530.77 538.54 540.38 813.47 767.41 34.52 

0.75 wt % Ti3C2Tx 526.42 528.50 537.54 539.76 812.99 766.83 34.18 

Sample Co2p - energy level O1s 

Energy 

level 
Co2p3/2 Co2p1/2 Satellite peak 

Co3+ Co2+ Co3+ Co2+ Co3+
 Co2+

 

Yb0.4Co3.96Ti0.04Sb12 777.66 782.88 792.31 797.40 786.61 802.52 - 

0.25 wt % Ti3C2Tx 778.33 783.92 795.22 801.59 789.58 807.76 - 

0.50 wt % Ti3C2Tx 779.26 784.05 794.19 800.28 788.33 805.86 - 

0.75 wt % Ti3C2Tx 778.28 782.59 793.15 799.67 787.08 806.17 530.54 

(a) (b)

Fig. S6 (a) Inverse pole figure (IPF) map showing the microstructure and (b) Inverse 

pole figure (IPF) showing the texture along the normal direction (ND) corresponding 

to Yb0.4Co3.96Ti0.04Sb12 



 

Fig. S7 UPS spectrum of (a) 0.25 wt % Ti3C2Tx (b) 0.50 wt % Ti3C2Tx (c) 0.75 wt 

% Ti3C2Tx composites, the insets show the close-ups view of the inelastic cut-off 

Ecut‑off (II) and Fermi edge EF (I) of the UPS spectrum (d) Variation of work 

function with Mxene weight percentage 

Fig. S8 Raman mapping performed on the selected area where blue region denotes the 

matrix Yb0.4Co3.96Ti0.04Sb12 and yellow region corresponds to Ti3C2Tx inclusions rich 

area. 
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Fig. S9 (a) Variation of carrier concentration and mobility with weight percentage 

of Ti3C2Tx (b) Variation of thermal diffusivity with temperature (c) Variation of 

Lorenz number with temperature  
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Figure S10 The temperature dependent lattice thermal conductivity data 

fitted as a function of T-x  



 

Calculations of PF, Pd, zTengg, and ηmax parameters 

The typical thermoelectric efficiency (ηmax) of a thermoelectric material is evaluated by the 

dimensionless parameter zT where, the S, σ, and κ values are assumed as temperature 

independent factors during the calculations. The term ZTengg, a quantitative metric was 

introduced by H. S. Kim,1 that evaluates the efficiency of thermoelectric (TE) conversion with 

the consideration of temperature dependent featured TE properties. This metric is particularly 

useful for accurately assessing the thermoelectric efficiency of a material with a significant 

temperature difference between the cold and hot sides of the thermoelectric legs. The 

calculations are made using the relations mentioned below; 

 

a. Average figure of merit, 

                                         𝑍𝑇𝑎𝑣𝑔 =

𝑆2(𝑇)

𝜌(𝑇)
×𝑇

𝜅(𝑇)
 

 

b. Engineering power factor, 

                                                𝑃𝐹𝑒𝑛𝑔 =
(∫ 𝑆(𝑇)ⅆ𝑇

𝑇𝐻
𝑇𝑐

)
2
𝛥𝑇

∫ 𝜌(𝑇)ⅆ𝑇
𝑇𝐻
𝑇𝑐

 

 

c. Engineering figure of merit, 

                                  (𝑧𝑇)𝑒𝑛𝑔 =
𝑃𝐹𝑒𝑛𝑔

∫ 𝜅(𝑇)ⅆ𝑇
𝑇𝐻
𝑇𝑐

 

 

d. Power density, 

              𝑃ⅆ =
𝑃𝐹𝑒𝑛𝑔𝛥𝑇

𝐿

𝑚𝑜𝑝𝑡

(1+𝑚𝑜𝑝𝑡)
2 ;             𝑚𝑜𝑝𝑡 = √1 + (𝑍𝑇)𝑒𝑛𝑔(

𝛼
𝜂𝑐⁄ − 1

2⁄ ) 

 

e. Maximum TE efficiency, 

𝜂𝑚𝑎𝑥 =
𝜂𝑐√1 + (𝑍𝑇)𝑒𝑛𝑔 (

𝛼
𝜂𝑐
−
1
2) − 1

√1 + (𝑍𝑇)𝑒𝑛𝑔 (
𝛼
𝜂𝑐
−
1
2)

𝛼
− 𝜂𝑐

 

 

                                    𝜂𝑐 =
𝛥𝑇

𝑇𝐻
  ;          𝛼 =

𝑆(𝑇𝐻)𝛥𝑇

∫ 𝑆(𝑇)ⅆ𝑇
𝑇𝐻
𝑇𝑐

 

 



where, ρ (T), S(T), ηC, α and κ (T) represents the resistivity, Seebeck coefficient, Carnot 

efficiency, Thomson coefficient and total thermal conductivity respectively and mopt is the 

ratio of external load resistance (RL) to internal resistance (Rint). 
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