Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Synergistic Regulation of the Co Microenvironment in MOF-74 for Olefin Epoxidation via Lanthanum Modification and Defect Engineering

Chang'an Wang ^a, Zuoshuai Xi ^a, Tao Ban ^a, Zhiyuan Liu ^a, Yibin Luo ^b, Hongyi Gao ^{a, *}, Ge

Wang^{a,*}, Xingtian Shu^{b,*}

a Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.

b Sinopec Research Institute of Petroleum Processing Co., Ltd, Beijing 100083, PR China.

*Corresponding author at: School of Materials Science and Engineering, University of

Science and Technology Beijing, Beijing 100083, PR China.

*Corresponding Authors:

E-mail addresses: hygao@ustb.edu.cn; gewang@ustb.edu.cn; shuxingtian.ripp@sinopec.com.

Figure S1. XRD patterns of (A) $Co_{0.50}La_{0.50}$ -MOF-74 and $Co_{0.50}La_{0.50}$ -MOF-74-xeq, (B) Co_1 -MOF-74-xeq. (C) Partial enlarged patterns of Co_xLa_{1-x} -MOF-74 at 6.0-8.0°.

Figure S2. FT-IR patterns of (A) Co₁-MOF-74-xeq and (B) Co_{0.50}La_{0.50}-MOF-74-xeq.

Figure S3. SEM images of (A) Co_{0.25}La_{0.75}-MOF-74, (B) Co_{0.50}La_{0.50}-MOF-74, (C) Co_{0.75}La_{0.25}-MOF-74 and (D) Co₁-MOF-74.

Figure S4. SEM images of (A) $Co_{0.50}La_{0.50}$ -MOF-74-1eq, (B) $Co_{0.50}La_{0.50}$ -MOF-74-2eq, (C) $Co_{0.50}La_{0.50}$ -MOF-74-4eq and (D) $Co_{0.50}La_{0.50}$ -MOF-74-8eq.

Figure S5. SEM images of (A) Co₁-MOF-74-1eq, (B) Co₁-MOF-74-2eq, (C) Co₁-MOF-74-4eq and (D) Co₁-MOF-74-8eq.

Figure S6. ¹H NMR spectrum of $Co_{0.50}La_{0.50}$ -MOF-74-1eq.

Figure S7. ¹H NMR spectrum of $Co_{0.50}La_{0.50}$ -MOF-74-2eq.

Figure S8. ¹H NMR spectrum of $Co_{0.50}La_{0.50}$ -MOF-74-4eq.

Figure S9. ¹H NMR spectrum of $Co_{0.50}La_{0.50}$ -MOF-74-8eq.

Figure S10. EPR spectra of $Co_{0.50}La_{0.50}$ -MOF-74 and $Co_{0.50}La_{0.50}$ -MOF-74-xeq.

Figure S11. XPS survey spectra of (A) Co_xLa_{1-x} -MOF-74 and (B) $Co_{0.50}La_{0.50}$ -MOF-74-xeq.

Figure S12. High-resolution XPS spectra of (A) C 1s, (B) Co 2p, (C) La 3d and (D) O 1s in $Co_{0.50}La_{0.50}$ -MOF-74-xeq.

Figure S13. NH₃-TPD curves of (A) $Co_{0.50}La_{0.50}$ -MOF-74-xeq, CO-TPD curves of (B) $Co_{0.50}La_{0.50}$ -MOF-74-xeq, O₂-TPD profiles of (C) Co_xLa_{1-x} -MOF-74 and (D) $Co_{0.50}La_{0.50}$ -MOF-74-xeq.

Figure S14. (A) 77 K N_2 adsorption-desorption isotherms, (B) pore size distribution curves of $Co_{0.50}La_{0.50}$ -MOF-74-xeq.

Figure S15. The catalytic performance catalyzed by Co_1 -MOF-74-xeq for the epoxidation of cyclohexene, cyclooctene and α -pinene.

Figure S16. (A) The cycling stability experiments of $Co_{0.50}La_{0.50}$ -MOF-74-4eq for cyclohexene epoxidation. (B) The XRD patterns and (C) The FT-IR spectra of fresh and cycled $Co_{0.50}La_{0.50}$ -MOF-74-4eq.

Figure S17. (A) TEM images of cycled $Co_{0.50}La_{0.50}$ -MOF-74-4eq. Elemental mapping images of (C) C, (B) Co and (C) La elements.

Figure S18. (A) In-situ Raman spectra in range of 700-1100 cm⁻¹ and (B) In-situ FT-IR spectra in range of 700-1700 cm⁻¹ over $Co_{0.50}La_{0.50}$ -MOF-74-4eq.

Figure S19. Adsorbed structural images of cyclohexene at metal sites of different catalysts.

Mulliken Charge Transfer

Figure S20. The Mulliken charge transfer of $Co_{0.50}La_{0.50}$ -MOF-74-4eq sample to O_2 .

Samples	Co (wt%)	La (wt%)	n _{Co} in 10 mg samples (mmol)	n _{La} in 10 mg samples (mmol)
Co ₁ -MOF-74	25.40		0.043	
Co _{0.25} La _{0.75} -MOF-74	12.56	19.94	0.021	0.014
Co _{0.50} La _{0.50} -MOF-74	12.15	16.97	0.021	0.012
Co _{0.75} La _{0.25} -MOF-74	14.65	13.48	0.025	0.010
Co _{0.50} La _{0.50} -MOF-74-1eq	9.80	23.76	0.017	0.017
Co _{0.50} La _{0.50} -MOF-74-2eq	10.24	22.33	0.017	0.016
Co _{0.50} La _{0.50} -MOF-74-4eq	9.99	24.63	0.017	0.018
Co _{0.50} La _{0.50} -MOF-74-8eq	11.32	24.35	0.019	0.018

Table S1. Mass fraction and molar ratio of Co and La elements by ICP-OES in samples

Samples	a ()	<i>b</i> ()	c ()	Volume (³)	Co ^{2+/} Co ³⁺ (%)
Co ₁ -MOF-74	26.13	26.13	6.72	3973.43	18.56
Co _{0.75} La _{0.25} -MOF-74	26.21	26.21	6.75	4015.65	15.90
Co _{0.50} La _{0.50} -MOF-74	26.24	26.24	6.79	4048.70	15.06
Co _{0.25} La _{0.75} -MOF-74	26.27	26.27	6.82	4075.89	20.80
Co _{0.50} La _{0.50} -MOF-74-1eq	26.28	26.25	6.78	4050.44	15.56
Co _{0.50} La _{0.50} -MOF-74-2eq	26.35	26.25	6.77	4055.24	25.33
Co _{0.50} La _{0.50} -MOF-74-4eq	26.26	26.28	6.80	4063.94	42.12
Co _{0.50} La _{0.50} -MOF-74-8eq	26.33	26.23	6.79	4061.04	17.03

Table S2. Cellular parameters and Co^{2+}/Co^{3+} content of synthesized samples.

		0100 0100	1	
Samulas	DHBDC	DMF	HAc	coordination
Samples	(mol%)	(mol%)	(mol%)	number (N)
Co _{0.50} La _{0.50} -MOF-74-1eq	83.3	15.0	1.7	5.49
Co _{0.50} La _{0.50} -MOF-74-2eq	76.5	19.9	3.6	5.47
Co _{0.50} La _{0.50} -MOF-74-4eq	76.1	17.5	6.3	5.20
Co _{0.50} La _{0.50} -MOF-74-8eq	52.2	41.7	6.1	4.13

Table S3. Mole percentage of DMF, DHBDC and HAc tested by ¹H NMR spectroscopy, andcoordination number of Co_{0.50}La_{0.50}-MOF-74-xeq.

Gunda	S _{BET} ^a	$\mathbf{S}_{\mathrm{Micropore}}{}^{b}$	S _{External} ^b	Micropore	Mesopore
Samples	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(m^2 g^{-1})$	Volume $b (cm^3 g^{-1})$	Volume $c (\text{cm}^3 \text{g}^{-1})$
Co ₁ -MOF-74	409	0	409	0	0.566
Co _{0.25} La _{0.75} -MOF-74	601	250	351	0.125	0.304
Co _{0.50} La _{0.50} -MOF-74	257	23	234	0.006	0.307
Co _{0.75} La _{0.25} -MOF-74	488	185	303	0.099	0.360
Co _{0.50} La _{0.50} -MOF-74-1eq	218	32	186	0.018	0.167
Co _{0.50} La _{0.50} -MOF-74-2eq	159	40	119	0.021	0.134
Co _{0.50} La _{0.50} -MOF-74-4eq	299	13	286	0.007	0.330
Co _{0.50} La _{0.50} -MOF-74-8eq	202	26	176	0.010	0.238

Table S4. Microstructural properties of Co_xLa_{1-x}-MOF-74 and Co_{0.50}La_{0.50}-MOF-74-xeq.

 $^{\it a}$ S_{BET} (total surface area) was calculated by BET method.

 $^{\textit{b}}$ $S_{\text{Micropore}},$ S_{External} and Micropore Volume were calculated by t-plot method.

^{*c*} Mesopore Volume was calculated by subtracting the micropore volume from the total pore volume.

Same la a	Conv. (%)		Sel. (%)	
Samples	cyclohexene	А	В	С
Co _{0.25} La _{0.75} -MOF-74	54.5	72.5	10.2	17.3
Co _{0.50} La _{0.50} -MOF-74	60.9	73.0	7.7	19.3
Co _{0.75} La _{0.25} -MOF-74	55.7	68.3	10.3	21.5
Co ₁ -MOF-74	50.8	62.0	12.3	25.7
Co _{0.50} La _{0.50} -MOF-74-1eq	74.9	81.1	0.0	18.9
Co _{0.50} La _{0.50} -MOF-74-2eq	76.4	83.9	0.0	16.1
Co _{0.50} La _{0.50} -MOF-74-4eq	92.2	93.9	0.0	6.1
Co _{0.50} La _{0.50} -MOF-74-8eq	70.1	82.2	0.0	17.8
Co ₁ -MOF-74-1eq	61.1	73.8	2.9	23.3
Co ₁ -MOF-74-2eq	53.9	68.0	6.6	25.4
Co ₁ -MOF-74-4eq	45.4	46.2	20.2	33.6
Co ₁ -MOF-74-8eq	48.7	51.6	15.6	32.8

Table S5. Detailed catalytic performance for cyclohexene epoxidation of synthesized samples.

A: 1,2-epoxycyclohexane, B: 2-cyclohexen-1-ol, C: 2-cyclohexen-1-one.

Reaction condition for olefin epoxidation: acetonitrile, 5 mL; cyclohexene, 1 mmol; trimethylacetaldehyde, 2mmol; O₂, 1 atm; catalyst, 10 mg; 40 °C, 1 h.

Committee.	Conv. (%)	Sel.	Sel. (%)	
Samples	cyclooctene	А	В	
Co _{0.25} La _{0.75} -MOF-74	38.2	>99.9		
Co _{0.50} La _{0.50} -MOF-74	70.2	>99.9		
Co _{0.75} La _{0.25} -MOF-74	37.9	>99.9		
Co ₁ -MOF-74	66.2	84.2	15.8	
Co _{0.50} La _{0.50} -MOF-74-1eq	37.3	>99.9		
Co _{0.50} La _{0.50} -MOF-74-2eq	75.8	>99.9		
Co _{0.50} La _{0.50} -MOF-74-4eq	77.3	>99.9		
Co _{0.50} La _{0.50} -MOF-74-8eq	67.9	>99.9		
Co ₁ -MOF-74-1eq	50.7	>99.9		
Co ₁ -MOF-74-2eq	49.5	>99.9		
Co ₁ -MOF-74-4eq	52.1	>99.9		
Co ₁ -MOF-74-8eq	53.4	91.8	8.2	

Table S6. Detailed catalytic performance for cyclooctene epoxidation of synthesized samples.

A: 1,2-epoxycyclooctane, B: 2-cycloocten-1-one.

Reaction condition for olefin epoxidation: acetonitrile, 5 mL; cyclooctene, 1 mmol; trimethylacetaldehyde, 2mmol; O_2 , 1 atm; catalyst, 10 mg; 40 °C, 1 h.

Comulas	Conv. (%)		Sel. (%)	
Samples	α-pinene	А	В	С
Co _{0.25} La _{0.75} -MOF-74	41.2	81.7	13.7	4.6
Co _{0.50} La _{0.50} -MOF-74	46.2	79.8	12.6	7.6
Co _{0.75} La _{0.25} -MOF-74	55.2	79.3	12.4	8.3
Co ₁ -MOF-74	70.5	2.4	9.8	87.8
Co _{0.50} La _{0.50} -MOF-74-1eq	27.7	81.8	11.7	6.5
Co _{0.50} La _{0.50} -MOF-74-2eq	67.0	81.9	11.9	6.2
Co _{0.50} La _{0.50} -MOF-74-4eq	95.7	91.0	4.4	4.6
Co _{0.50} La _{0.50} -MOF-74-8eq	95.3	85.8	8.6	5.6
Co ₁ -MOF-74-1eq	89.5	2.7	12.6	84.7
Co ₁ -MOF-74-2eq	92.1	3.7	12.7	83.6
Co ₁ -MOF-74-4eq	91.8	2.8	12.2	85.0
Co ₁ -MOF-74-8eq	92.1	5.0	14.0	81.0

Table S7. Detailed catalytic performance for α -pinene epoxidation of synthesized samples.

A: 2,3-epoxypinane, B: verbenol, C: verbenone.

Reaction condition for olefin epoxidation: acetonitrile, 5 mL; α -pinene, 1 mmol; trimethylacetaldehyde, 2mmol; O₂, 1 atm; catalyst, 10 mg; 40 °C, 1 h.

Cycle numbers —	Conv. (%)	Sel. (%)
Cycle numbers —	cyclohexene	Epoxides
1	92.7	93.9
2	93.7	88.1
3	93.9	88.4
4	89.3	92.9
5	91.3	94.8
6	91.8	90.6
7	81.4	93.8
8	67.6	96.8

Table S8. Detailed catalytic data for cyclohexene epoxidation of cycling experiment using

 $Co_{0.50}La_{0.50}$ -MOF-74-4eq as catalyst.

Reaction condition: acetonitrile, 5 mL; cyclohexene, 1 mmol; trimethylacetaldehyde, 2mmol; O_2 , 1 atm; $Co_{0.50}La_{0.50}$ -MOF-74-4eq, 10 mg; 40 °C, 1 h. Catalyst mass loss was neglected during the reaction.

Entry	Samples	Oxidant	Solvent	T (°C)	Time (h)	Yield (%)	Reference
1	Co _{0.50} La _{0.50} -MOF-74-4eq	O ₂	CH ₃ CN	40	1	86.6	This work
2	NENU-MV-1a	Air	CH ₃ CN	35	2	81.7	1
3	Co-PTC	O ₂	dichloromethane	35	10	58.1	2
4	Cu ²⁺ @COMOC-4	O ₂	chloroform	40	7	43.6	3
5	Mo@UiO-66-100for	H_2O_2	CH ₃ CN	60	2	~60	4
6	Co-NNO-MOF(48)	Air	CH ₃ CN	25	8	84.7	5
7	Co(II)@Cr-MIL-101-P2I	Air	CH ₃ CN	35	5	73.3	6
8	Co _{51.8} Mo _{48.2} -ZIF	TBHP	dichloroethane	80	20	83.8	7

Table S9. Comparison of cyclohexene epoxidation catalyzed by $Co_{0.50}La_{0.50}$ -MOF-74-4eq in this

work with the reported catalytic performance.

Samples	ALIE value	;
Samples	Min(eV)	Max(eV)
Co ₁ -MOF-74	6.40	16.43
Co ₁ -MOF-74-4eq	6.49	17.38
Co _{0.50} La _{0.50} -MOF-74-4eq	5.15	26.53

 Table S10. Detailed ALIE value of synthesized samples.

Bond length ()	Original	Co ₁ -MOF-74	Co ₁ -MOF-74-4eq	Co _{0.50} La _{0.50} -MOF-74-4eq
0-0	1.22	1.27	1.25	1.38

Table S11. Bond length of adsorbed oxygen of different samples.

Table S12. Adsorption energy of oxygen and cyclohexene at Co sites of different samples.

Absorb energy(eV)	Co ₁ -MOF-74	Co ₁ -MOF-74-4eq	Co _{0.50} La _{0.50} -MOF-74-4eq
O ₂ -Co	-1.98	-0.34	-3.02
Cyclohexene-Co	-0.99	-0.55	-0.98

Table S13. ΔG in the epoxidation pathway and the allylic oxidation pathway at 313.15 K.

ΔG of epoxidation pathway			ΔG of allylic oxidation pathway		
Products	HF (a.u.)	eV	Products	HF (a.u.)	eV
R(2C ₆ H ₁₀ +O ₂)	0	0	R(2C ₆ H ₁₀ +O ₂)	0	0
TS1	0.01	0.29	TS2	0.01	0.32
M1(2C ₆ H ₁₀ O)	-0.05	-1.49	M2(C ₆ H ₉ -OOH+C ₆ H ₁₀)	0.003	0.08
			TS3	-0.08	-2.04
			M3(C ₆ H ₁₀ O+C ₆ H ₉ -OH)	-0.09	-2.53

References

- 1 S. Wang, Y. Liu, Z. Zhang, X. Li, H. Tian, T. Yan, X. Zhang, S. Liu, X. Sun, L. Xu, F. Luo and S. Liu, ACS Appl. Mater. Interfaces, 2019, 11, 12786-12796.
- 2 X. Sun, L. Wang and Z. Tan, Catal. Lett., 2015, 145, 1094-1102.
- 3 Y. Y. Liu, K. Leus, T. Bogaerts, K. Hemelsoet, E. Bruneel, V. Van Speybroeck and P. Van Der Voort, *ChemCatChem*, 2013, **5**, 3657-3664.
- 4 M. Jin, G. Liu, C. Si, Z. Lv, X. Cheng, H. Han and Q. Niu, Mol. Catal., 2022, 524, 112312.
- 5 Y. Qin, B. Wang, J. Li, X. Wu and L. Chen, Transition Met. Chem., 2019, 44, 595-602.
- 6 J. Wang, M. Yang, W. Dong, Z. Jin, J. Tang, S. Fan, Y. Lu and G. Wang, *Catal. Sci. Technol.*, 2016, 6, 161-168.
- 7 W. Zou, Y. Guo, P. Li, M. Liu and L. Hou, ChemCatChem, 2020, 13, 416-424.