Supporting Information

Density Functional Theory Studies on Tuning TaxTi₍₁₋

x)S2 For Insoluble Li2S2-Li2S Conversion in Lithium-

Sulfur Batteries

$$\label{eq:sigma} \begin{split} \mbox{Figure S1. Energy band structure and PDOS of (a)} $Ta_{0.06}Ti_{0.94}S_2(b)Ta_{0.13}Ti_{0.87}S_2(c)Ta_{0.19}Ti_{0.81}S_2 $$ (d)$Ta_{0.25}Ti_{0.75}S_2(e)$Ta_{0.31}Ti_{0.69}S_2(f)$Ta_{0.44}Ti_{0.56}S_2(g)$Ta_{0.5}Ti_{0.5}S_2(h)$Ta_{0.56}Ti_{0.44}S_2 $$ (i)$Ta_{0.63}Ti_{0.37}S_2(j)$Ta_{0.69}Ti_{0.31}S_2(k)$Ta_{0.75}Ti_{0.25}S_2(l)$Ta_{0.82}Ti_{0.18}S_2(m)$Ta_{0.88}Ti_{0.12}S_2$ and $$ (n)$Ta_{0.94}Ti_{0.06}S_2$, respectively. \end{split}$$

Figure S2. The top and side views of the most optimized geometric structures of (a)LiS (b)Li₂S (c)Li₂S₂(d)Li₃S₂ on TiS₂. The grey, yellow brown and purple atom is Ti, S_{TiS₂}, S_{LiPSs}, and Li respectively.

Figure S3. The top and side views of the most optimized geometric structures of (a)LiS (b)Li₂S (c)Li₂S₂(d)Li₃S₂ on Ta_{0.06}Ti_{0.94}S₂. The grey, green, yellow brown and purple atom is Ti, Ta,S_{Ta_{0.06}Ti_{0.94}S₂, S_{LiPSs}, and Li respectively.}

Figure S4. The top and side views of the most optimized geometric structures of (a)LiS (b)Li₂S (c)Li₂S₂(d)Li₃S₂ on Ta_{0.13}Ti_{0.87}S₂. The grey, green, yellow brown and purple atom is Ti, Ta,S_{Ta_{0.13}Ti_{0.87}S₂, S_{LiPSs}, and Li respectively.}

Figure S5. The top and side views of the most optimized geometric structures of (a)LiS (b)Li₂S (c)Li₂S₂(d)Li₃S₂ on Ta_{0.19}Ti_{0.81}S₂. The grey, green, yellow brown and purple atom is Ti, Ta,S_{Ta_{0.19}Ti_{0.81}S₂, S_{LiPSs}, and Li respectively.}

Figure S6. The top and side views of the most optimized geometric structures of (a)LiS (b)Li₂S (c)Li₂S₂(d)Li₃S₂ on Ta_{0.25}Ti_{0.75}S₂. The grey, green, yellow brown and purple atom is Ti,

Figure S7. The top and side views of the most optimized geometric structures of (a)LiS (b)Li₂S (c)Li₂S₂(d)Li₃S₂ on Ta_{0.31}Ti_{0.69}S₂. The grey, green, yellow brown and purple atom is Ti, Ta,S_{Ta_{0.31}Ti_{0.69}S₂, S_{LiPSs}, and Li respectively.}

Figure S8. The top and side views of the most optimized geometric structures of (a)LiS (b)Li₂S (c)Li₂S₂(d)Li₃S₂ on Ta_{0.44}Ti_{0.56}S₂. The grey, green, yellow brown and purple atom is Ti,

Figure S9. The top and side views of the most optimized geometric structures of (a)LiS (b)Li₂S (c)Li₂S₂(d)Li₃S₂ on Ta_{0.5}Ti_{0.5}S₂. The grey, green, yellow brown and purple atom is Ti, Ta,S_{Ta_{0.5}Ti_{0.5}S₂, S_{LiPSs}, and Li respectively.}

Figure S10. The top and side views of the most optimized geometric structures of (a)LiS (b)Li₂S (c)Li₂S₂(d)Li₃S₂ on Ta_{0.56}Ti_{0.44}S₂. The grey, green, yellow brown and purple atom is Ti, Ta,S_{Ta_{0.56}Ti_{0.44}S₂, S_{LiPSs}, and Li respectively.}

Figure S11. The top and side views of the most optimized geometric structures of (a)LiS (b)Li₂S (c)Li₂S₂(d)Li₃S₂ on Ta_{0.63}Ti_{0.37}S₂. The grey, green, yellow brown and purple atom is Ti, Ta,S_{Ta_{0.63}Ti_{0.37}S₂, S_{LiPSs}, and Li respectively.}

Figure S12. The top and side views of the most optimized geometric structures of (a)LiS (b)Li₂S (c)Li₂S₂(d)Li₃S₂ on Ta_{0.69}Ti_{0.31}S₂. The grey, green, yellow brown and purple atom is Ti, Ta,S_{Ta_{0.69}Ti_{0.31}S₂, S_{LiPSs}, and Li respectively.}

Figure S13. The top and side views of the most optimized geometric structures of (a)LiS (b)Li₂S (c)Li₂S₂(d)Li₃S₂ on Ta_{0.75}Ti_{0.25}S₂. The grey, green, yellow brown and purple atom is Ti, Ta,S_{Ta_{0.75}Ti_{0.25}S₂, S_{LiPSs}, and Li respectively.}

Figure S14. The top and side views of the most optimized geometric structures of (a)LiS (b)Li₂S (c)Li₂S₂(d)Li₃S₂ on Ta_{0.82}Ti_{0.18}S₂. The grey, green, yellow brown and purple atom is Ti,

Figure S15. The top and side views of the most optimized geometric structures of (a)LiS (b)Li₂S (c)Li₂S₂(d)Li₃S₂ on Ta_{0.88}Ti_{0.12}S₂. The grey, green, yellow brown and purple atom is Ti, Ta,S_{Ta_{0.88}Ti_{0.12}S₂, S_{LiPSs}, and Li respectively.}

Figure S16. The top and side views of the most optimized geometric structures of (a)LiS (b)Li₂S (c)Li₂S₂(d)Li₃S₂ on Ta_{0.94}Ti_{0.06}S₂. The grey, green, yellow brown and purple atom is Ti, Ta,S_{Ta_{0.94}Ti_{0.06}S₂, S_{LiPSs}, and Li respectively.}

Figure S17. The top and side views of the most optimized geometric structures of (a)LiS (b)Li₂S (c)Li₂S₂(d)Li₃S₂ on TaS₂. The green, yellow brown and purple atom is Ta,S_{TaS₂}, S_{LiPSs}, and Li respectively.

$X) = 2(0 - 1 - 1)^{1/2}$							
E _a (eV)	LiS	Li ₂ S	Li ₂ S ₂	Li ₃ S ₂			
TiS ₂	-2.51	-3.36	-2.03	-2.75			
Ta _{0.06} Ti _{0.94} S ₂	-2.41	-3.25	-1.92	-2.69			
Ta _{0.13} Ti _{0.87} S ₂	-2.41	3.12	-1.94	-2.64			
Ta _{0.19} Ti _{0.81} S ₂	-2.37	-3.05	-1.90	-2.59			
Ta _{0.25} Ti _{0.75} S ₂	-2.29	-3.04	-1.87	-2.56			
Ta _{0.31} Ti _{0.69} S ₂	-2.29	-2.99	-1.82	-2.53			
Ta _{0.38} Ti _{0.62} S ₂	-2.40	-3.14	-1.87	-2.58			
Ta _{0.44} Ti _{0.56} S ₂	-2.31	-3.00	-1.86	-2.51			
Ta _{0.5} Ti _{0.5} S ₂	-2.25	-2.94	-1.77	-2.57			
Ta _{0.56} Ti _{0.44} S ₂	-2.32	-3.01	-1.98	-2.85			
Ta _{0.63} Ti _{0.37} S ₂	-2.32	-3.05	-1.95	-2.60			
Ta _{0.69} Ti _{0.31} S ₂	-2.34	-3.04	-1.88	-2.53			
Ta _{0.75} Ti _{0.25} S ₂	-2.38	-3.17	-1.89	-2.59			
Ta _{0.82} Ti _{0.18} S ₂	-2.31	-2.93	-1.79	-2.48			
Ta _{0.88} Ti _{0.12} S ₂	-2.38	-3.07	-1.90	-2.55			
Ta _{0.94} Ti _{0.06} S ₂	-2.32	-2.99	-1.82	-2.48			
TaS ₂	-2.42	-2.96	-1.83	-2.48			

Table S1. The calculated adsorption energy (Ea) of LiS, Li2S, Li2S2 and Li3S2 on TaxTi(1-
X)S2($0 \le X \le 1$).

The closest distance(Å)	d _{LiS}	d_{Li_2S}	$\mathbf{d}_{\mathrm{Li}_2\mathrm{S}_2}$	$d_{Li_3S_2}$
TiS ₂	2.46	2.42	2.57	2.53
Ta _{0.06} Ti _{0.94} S ₂	2.45	2.46	2.58	2.54
Ta _{0.13} Ti _{0.87} S ₂	2.44	2.45	2.57	2.54
Ta _{0.19} Ti _{0.81} S ₂	2.45	2.42	2.56	2.53
Ta _{0.25} Ti _{0.75} S ₂	2.44	2.45	2.57	2.54
Ta _{0.31} Ti _{0.69} S ₂	2.44	2.41	2.58	2.53
Ta _{0.38} Ti _{0.62} S ₂	2.45	2.41	2.56	2.53
Ta _{0.44} Ti _{0.56} S ₂	2.45	2.45	2.55	2.53
$Ta_{0.5}Ti_{0.5}S_2$	2.46	2.42	2.56	2.54
$Ta_{0.56}Ti_{0.44}S_2$	2.45	2.44	2.56	2.48
$Ta_{0.63}Ti_{0.37}S_2$	2.46	2.43	2.59	2.53
Ta _{0.69} Ti _{0.31} S ₂	2.45	2.41	2.55	2.52
Ta _{0.75} Ti _{0.25} S ₂	2.46	2.41	2.57	2.53
Ta _{0.82} Ti _{0.18} S ₂	2.46	2.41	2.55	2.52
$Ta_{0.88}Ti_{0.12}S_2$	2.46	2.41	2.54	2.52
Ta _{0.94} Ti _{0.06} S ₂	2.43	2.41	2.53	2.49
TaS ₂	2.45	2.42	2.47	2.49

Table S2. The closest distance of the Li atom to $S_{Ta_XTi_{(1-X)}S_2}$ when LiS, Li₂S, Li₂S₂ and Li₃S₂ on $Ta_XTi_{(1-X)}S_2(0 \le X \le 1)$.

$\Delta e_{Ta_{X}Ti_{(1-X)}S_{2}} =$				
	\mathbf{Q}_{LiS}	\mathbf{Q}_{Li_2S}	$\mathbf{Q}_{Li_2S_2}$	$\mathbf{Q}_{\mathbf{Li}_3\mathbf{S}_2}$
$-\Delta e_{\text{LiPSs}}$				
TiS ₂	-0.54	-1.12	-1.01	-1.09
Ta0.06Ti0.94S2	-0.48	-1.21	-0.98	-1.09
Ta0.13Ti0.87S2	-0.53	-1.15	-0.98	-1.08
Ta0.19Ti0.81S2	-0.53	-1.12	-1.03	-1.07
Ta0.25Ti0.75S2	-0.50	-1.18	-0.95	-1.04
Ta0.31Ti0.69S2	-0.54	-1.21	-0.92	-1.04
Ta0.38Ti0.62S2	-0.46	-1.09	-0.97	-1.06
Ta0.44Ti0.56S2	-0.50	-1.17	-0.94	-1.03
Ta0.5Ti0.5S2	-0.50	-1.15	-0.93	-1.02
Ta0.56Ti0.44S2	-0.52	-1.12	-0.92	-1.45
Ta0.63Ti0.37S2	-0.48	-1.15	-0.90	-1.02
Ta0.69Ti0.31S2	-0.51	-1.14	-0.93	-1.02
Ta0.75Ti0.25S2	-0.46	-1.10	-0.92	-1.01
Ta0.82Ti0.18S2	-0.47	-1.16	-0.87	-0.99
Ta0.88Ti0.12S2	-0.50	-1.15	-0.90	-1.00
Ta0.94Ti0.06S2	-0.50	-1.13	-0.87	-0.98
TaS ₂	-0.47	-1.11	-0.83	-0.99

Table S3. Bader charge numbers indicate the number of electrons transferred from LiS, Li₂S,Li₂S₂ and Li₃S₂ to TaxTi(1-x)S₂($0 \le X \le 1$). Here, Bader charge difference means the difference of
charge value between adsorbed case and free-standing case.

$\Delta e_{Ta_{X}Ti_{(1-X)}S_{2}}$	Li	S	Li	₂S	Li ₂	S ₂	Li ₃	S₂
=-∆e _{LIPSs}	∆e _{Li}	Δe _s	Δe _{Li}	Δe _s	∆e _{Li}	∆e _s	∆e _{Li}	∆e _s
TiS ₂	-0.87	0.33	-1.72	0.60	-1.73	0.72	-2.62	1.53
Ta0.06Ti0.94S2	-0.87	0.39	-1.74	0.53	-1.74	0.76	-2.63	1.54
Ta0.13Ti0.87S2	-0.87	0.34	-1.75	0.60	-1.74	0.76	-2.63	1.55
Ta0.19Ti0.81S2	-0.87	0.34	-1.74	0.62	-1.76	0.73	-2.62	1.55
Ta0.25Ti0.75S2	-0.88	0.38	-1.74	0.56	-1.74	0.79	-2.62	1.58
Ta0.31Ti0.69S2	-0.87	0.33	-1.74	0.53	-1.74	0.82	-2.63	1.59
Ta0.38Ti0.62S2	-0.87	0.41	-1.74	0.65	-1.74	0.77	-2.63	1.57
Ta0.44 Ti0.56 S2	-0.87	0.37	-1.74	0.57	-1.74	0.80	-2.62	1.59
Ta0.5Ti0.5S2	-0.88	0.38	-1.74	0.60	-1.74	0.81	-2.62	1.60
Ta0.56Ti0.44S2	-0.87	0.35	-1.74	0.62	-1.75	0.83	-2.61	1.16
Ta0.63Ti0.37S2	-0.87	0.39	-1.73	0.58	-1.74	0.84	-2.62	1.60
Ta0.69Ti0.31S2	-0.87	0.36	-1.74	0.60	-1.74	0.81	-2.62	1.60
Ta0.75Ti0.25S2	-0.87	0.41	-1.73	0.63	-1.74	0.82	-2.62	1.61
Ta0.82Ti0.18S2	-0.87	0.40	-1.74	0.57	-1.74	0.87	-2.62	1.63
Ta0.88Ti0.12S2	-0.87	0.37	-1.74	0.59	-1.74	0.84	-2.62	1.62
Ta0.94 Ti0.06 S2	-0.87	0.37	-1.73	0.60	-1.74	0.87	-2.62	1.64
TaS ₂	-0.87	0.40	-1.74	0.63	-1.74	0.91	-2.62	1.63

Table S4. Bader charge numbers indicate the number of electrons transferred from Li and S ofLiS, Li2S, Li2S2 and Li3S2 to TaxTi(1-x)S2(0 \leq X \leq 1). Here, Bader charge difference means thedifference of charge value between adsorbed case and free-standing case.

ΔWF(eV)		ΔWF_{Li_2S}	$\Delta WF_{Li_2S_2}$	$\Delta WF_{Li_3S_2}$
TiS ₂	-0.27	-0.60	-0.19	-0.84
Ta _{0.06} Ti _{0.94} S ₂	-0.30	-0.57	-0.19	-0.84
Ta _{0.13} Ti _{0.87} S ₂	-0.27	-0.54	-0.19	-0.84
Ta _{0.19} Ti _{0.81} S ₂	-0.27	-0.54	-0.16	-0.82
Ta _{0.25} Ti _{0.75} S ₂	-0.27	-0.54	-0.16	-0.82
Ta _{0.31} Ti _{0.69} S ₂	-0.24	-0.49	-0.14	-0.82
Ta _{0.38} Ti _{0.62} S ₂	-0.14	-0.38	-0.08	-0.71
Ta _{0.44} Ti _{0.56} S ₂	-0.19	-0.41	-0.11	-0.79
Ta _{0.5} Ti _{0.5} S ₂	-0.22	-0.46	-0.11	-0.79
Ta _{0.56} Ti _{0.44} S ₂	-0.22	-0.41	-0.14	-0.19
Ta _{0.63} Ti _{0.37} S ₂	-0.14	-0.44	-0.11	-0.79
Ta _{0.69} Ti _{0.31} S ₂	-0.22	-0.47	-0.11	-0.76
Ta _{0.75} Ti _{0.25} S ₂	-0.19	-0.44	-0.08	-0.73
Ta _{0.82} Ti _{0.18} S ₂	-0.16	-0.46	-0.08	-0.73
Ta _{0.88} Ti _{0.12} S ₂	-0.14	-0.44	-0.05	-0.73
Ta _{0.94} Ti _{0.06} S ₂	-0.14	-0.41	-0.05	-0.73
TaS ₂	-0.16	-0.90	0	-0.68

 $\label{eq:s5} \begin{array}{l} \mbox{Table S5}. \ The \ difference \ of \ Work \ function(\ \Delta WF), \ when \ LiS, \ Li_2S, \ Li_2S_2 \ and \ Li_3S_2 \ absorb \ on \\ Ta_XTi_{(1-X)}S_2(0 \le X \le 1). \end{array}$

S20

 $\begin{array}{l} \label{eq:s18.coh} Figure \ S18. \ COHP \ diagram \ of \ the \ Li-S_{Ta_{X}Ti_{(1-X)}S_{2}} & (0 \leq X \leq 1) \ bond \ in(a) TiS_{2}, (b) Ta_{0.06}Ti_{0.94}S_{2}, \\ (c) Ta_{0.13}Ti_{0.87}S_{2}, (d) Ta_{0.19}Ti_{0.81}S_{2}, (e) Ta_{0.25}Ti_{0.75}S_{2}, (f) Ta_{0.31}Ti_{0.69}S_{2}, (g) Ta_{0.38}Ti_{0.62}S_{2}, (h) Ta_{0.44}Ti_{0.56}S_{2}, \\ (i) Ta_{0.5}Ti_{0.5}S_{2}, (j) Ta_{0.56}Ti_{0.44}S_{2}, (k) Ta_{0.63}Ti_{0.37}S_{2}, (l) Ta_{0.69}Ti_{0.31}S_{2}, (m) Ta_{0.75}Ti_{0.25}S_{2}, (n) Ta_{0.82}Ti_{0.18}S_{2}, \\ & (o) Ta_{0.88}Ti_{0.12}S_{2}, (p) Ta_{0.94}Ti_{0.06}S_{2}, \ and \ (q) TaS_{2}, \ respectively. \end{array}$

Figure S19. Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on TiS₂. blue and pink represent charge depletion and gain, respectively.

Figure S20. Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on Ta_{0.06}Ti_{0.94}S₂. blue and pink represent charge depletion and gain, respectively.

Figure S21. Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on Ta_{0.13}Ti_{0.87}S₂. blue and pink represent charge depletion and gain, respectively.

Figure S22. Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on Ta_{0.19}Ti_{0.81}S₂. blue and pink represent charge depletion and gain, respectively.

Figure S23. Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on Ta_{0.25}Ti_{0.75}S₂. blue and pink represent charge depletion and gain, respectively.

Figure S24.Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on Ta_{0.31}Ti_{0.69}S₂. blue and pink represent charge depletion and gain, respectively.

Figure S25.Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on Ta_{0.38}Ti_{0.62}S₂. blue and pink represent charge depletion and gain, respectively.

Figure S26. Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on Ta_{0.44}Ti_{0.56}S₂. blue and pink represent charge depletion and gain, respectively.

Figure S27. Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on Ta_{0.5}Ti_{0.5}S₂. blue and pink represent charge depletion and gain, respectively.

Figure S28. Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on Ta_{0.56}Ti_{0.44}S₂. blue and pink represent charge depletion and gain, respectively.

Figure S29. Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on Ta_{0.63}Ti_{0.37}S₂. blue and pink represent charge depletion and gain, respectively.

Figure S30. Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on Ta_{0.69}Ti_{0.31}S₂. blue and pink represent charge depletion and gain, respectively.

Figure S31. Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on Ta_{0.75}Ti_{0.25}S₂. blue and pink represent charge depletion and gain, respectively.

Figure S32. Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on Ta_{0.82}Ti_{0.18}S₂. blue and pink represent charge depletion and gain, respectively.

Figure S33. Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on Ta_{0.88}Ti_{0.12}S₂. blue and pink represent charge depletion and gain, respectively.

Figure S34. Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on Ta_{0.94}Ti_{0.06}S₂. blue and pink represent charge depletion and gain, respectively.

Figure S35. Side views of the Plane-averaged charge density difference between (a) LiS, (b) Li₂S, (c) Li₂S₂, (d) Li₃S₂ on TaS₂. blue and pink represent charge depletion and gain, respectively.

Figure S36. (a) Total energy change of Ta_{0.38}Ti_{0.62}S₂ in AIMD simulations at lower and higher concentration Li⁺, (b) top and side views of Ta_{0.38}Ti_{0.62}S₂ forming Li₃S₂ at 0.8 ps in lower concentration of Li⁺. Top and side views of the final structure in (c) lower and (d) higher concentration Li⁺.

Figure S37. The leave-one-out cross-validation of $Ta_X Ti_{(1-X)}S_2 MSE$ and RMSE.

 Table S6. The correlation (Pearson correlation coefficient) between a single parameter and the Gibbs free energy of Pathways 1.

Pearse	on							
correl	ation WF	Δ	WF _{Li₂S}	$\Delta WF_{Li_2S_2}$	∆d-p	ΔX	Ea _{Li₂S}	$Ea_{Li_2S_2}$
coeffi	cient							
ΔG1-]	P1 -0.5	7 -0.2	21	0.42	0.32	-0.57	0.81	0.42
	Pearson							
	correlation	Q_{Li_2S}	$Q_{\text{Li}_2 S_2}$	$d_{Li_2S} \\$	$d_{Li_2S_2} \\$	ICOHP _{Li2} S	ICOHP _{Li2S}	2
	coefficient							

0.09

-0.46

-0.45

-0.06

 $\Delta G1-P1$

-0.09

0.65