Supporting Information

Radiation-cooled aramid composite films featuring tunable TiO₂ nanorod arrays anchored on the surface of 2D Mica nanosheet for passive daytime radiative cooling application

Bo Ma,^{abc}[†] Wei Guo,^{bc}[†] Jixiang Zhang,^{*abc} Cui Liu,^{bc} Nian Li,^{bc} Shudong Zhang,^{*bc} and Zhenyang Wang^{*bc}

^a School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University,

Chongqing 400074, China.

^b Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese

Academy of Sciences, Hefei, 230031, China.

^c Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes

of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.

*Corresponding Authors

Email:zhangjixiang@163.com, sdzhang@iim.ac.cn, zywang@iim.ac.cn

Note S1: Experimental principles section

Step 1: Growth of TiO₂ seeds by hydrothermal method. Ti(O-Bu)₄ was hydrolysed to produce Ti(OH)₄, Ti(OH)₄ was deposited on Mica to form TiO₂ seeds. After the preparation of TiO₂-seeds, Mica still maintains its original two-dimensional structure with a large number of disordered and tightly arranged TiO₂ nanoparticles uniformly encapsulated on its surface, and its synthetic equation¹⁻² is as follows:

 $Ti(O-Bu)_4 + 4H_2O \rightarrow Ti(OH)_4 \rightarrow TiO_2 \bullet nH_2O$

Step 2: Growth of TiO₂ nanorods by Ti-H₂O₂ method,³⁻⁵ the synthesis equation can be expressed as:

$$Ti + H_2O_2 \xrightarrow{HNO_3} [TiO(H_2O_2)]^{2+} \rightarrow Ti^{4+}(OH)_X \rightarrow H_2Ti_5O_{11} \bullet 3H_2O \rightarrow TiO_2$$

Metal Ti is eroded by H_2O_2 in acidic solution to form Ti(OH)₄, which is unstable at high temperatures and decomposes to form titanium dioxide sol. Dissolution of the formed titanium dioxide sol releases hydrated Ti(IV) ions into solution and once a critical concentration is reached, the hydrated Ti(IV) ions precipitate back into the Ti substrate to form titanium dioxide films. The additive HNO₃ affects the 'directional attachment' process of titanium dioxide, which in turn affects the resulting nanofeatures. The hydrolysis of melamine with the addition of HNO₃ generates NH⁴⁺, the selective absorption of NH⁴⁺ on certain crystal surfaces of TiO₂, which contributes to the 'directional attachment' growth of $H_2Ti_5O_{11}$ -3H₂O. ^{3, 5-6} The monoclinic crystal type $H_2Ti_5O_{11}$ -3H₂O was converted to rutile TiO₂ nanorods at 550 °C.

Step 3: ASCFs were produced by solvent exchange and deprotonation. Firstly, TiO₂ NAs-Mica was modified by APTES in order to make it have positive charge, and ANFs were deprotonated by DMSO and KOH in a mixture of solvents in order to make them have negative charge. Then, the APTES-modified TiO₂ NAs-Mica and ANFs were mixed and stirred for 2 h. IPA was slowly dripped in, and TiO₂ NAs-Mica was stacked into a layered structure by solvent exchange and turbulent shear,⁷ finally ASCFs were prepared by vacuum filtration.

Note S2: Theoretically Calculated Radiative Cooling Power.

When the radiative cooler is placed horizontally on the ground and exposed to a cloudless sky, it's effected by the solar radiation and downward radiation from the atmosphere. The net cooling power P_{cool} can be calculated through the following equations:

$$P_{cool}(T) = P_{\gamma}(T) - P_{a}(T_{a}) - P_{s}(T) - P_{c}$$

$$P_{\gamma}(T) = A \int d\Omega \cos \theta \int_{0}^{\infty} d\lambda I_{BB}(T, \lambda) \varepsilon(\lambda, \theta)$$

$$P_{a}(T_{a}) = A \int d\Omega \cos \theta \int_{0}^{\infty} d\lambda I_{BB}(Ta, \lambda) \varepsilon(\lambda, \theta) \varepsilon_{a}(\lambda, \theta)$$

$$P_{s} = A \cos \theta_{s} \int_{0}^{\infty} d\lambda \varepsilon(\lambda, \theta_{s}) I_{AM1.5}(\lambda)$$

$$P_{c}(T, T_{a}) = A h_{c}(T_{a} - T)$$

where T is the temperature of the radiative cooler, T_a is the temperature of the surrounding environment, P_{γ} is the power radiated by the cooler, P_a is the absorption of downward atmospheric thermal radiation, P_s is the absorbed solar power and P_c is the power lost due to the conductive and convective heat change with the surroundings, A, Ω and θ are surface area of the sample, a solid angle and angle between the solid angle and the normal direction of the sample's surface, respectively, $\varepsilon(\lambda, \theta)$ is emissivity of the object at a particular wavelength λ and angle θ , $\varepsilon_{\alpha}(\lambda, \theta)$ is emissivity of the atmosphere, θ_s is the direction of the sunlight, h_c is nonradiative heat coefficient that is comprised of heat convection and heat conduction and its value ranges from 0 to 9 W·m⁻²·K⁻¹.

Sample	Solar reflectance (%)	IR emissivity (%)	Anti-UV	Flexible
Siloxane coating ⁵¹	92	93	Unknown	No
Polymethyl				
Methacrylate	85	98	Unknown	Yes
Film ⁵²				
Cooling wood ⁴⁷	96	90	No	No
Cellulose fabric ⁴⁹	91.7	90	No	Yes
PVA fabric ¹²	94	94	Unknown	Yes
PEO fabric ⁵⁴	96	78	Unknown	Yes
MMA film ²⁰	95	98	Unknown	Yes
PU aerogel ⁵⁵	97	88	No	No
Cellulose paper ⁵⁶	95	93	No	Yes
Ceramic aerogel ⁵⁷	94	95	Unknown	No
PDMS coating ⁵⁸	90	92	Unknown	No
PDMS coating ⁴⁸	96	94	Unknown	No
Cellulose foam ¹³	97	94.8	No	No
PEO/PT fabric ⁵⁰	94	91	Yes	Yes
PE fabric ⁵³	93	96	Yes	Yes
This work	97.5	96.3	96h UV	Yes

 Table S1 Compared the solar reflectance, IR emissivity, anti-UV and flexible of ASCFs with other reported cooling materials

Fig. S1 Statistics of different TiO₂ seeds diameters and solar reflectance (TiO₂ seeds-Mica). (a-c) SEM images of TiO₂ seeds-Mica with different particle sizes. (d-f) Statistical plot of particle size of TiO₂ seeds-Mica. (g) Schematic Scattering of TiO₂ seeds-Mica. (h) Solar reflectance of different TiO₂ seeds-Mica.

Fig. S2 Solar reflectance at different TiO₂ nanorod spacings and heights (TiO₂ NAs-Mica). (a-d) SEM images of TiO₂ nanorod arrays with different spacings. (e-h) AFM plots of different TiO₂ nanorod arrays heights. (i) Schematic Scattering of TiO₂ NAs-Mica. (j) Solar reflectance of different TiO₂

Fig. S3 XRD patterns of (a) Mica, (b) TiO₂ seeds-Mica and (c) TiO₂ NAs-Mica.

Fig. S5 Solar spectral reflectance of Mica, TiO₂ NAs-Mica and ASCFs.

Fig. S6 Scratch resistance test to test durability, the ASCFs was tilted to 45° and abraded on top to

simulate falling stones and sand for 60 min.

Fig. S7 Environmental durability of mechanical and optical properties for ASCFs. (a) Photographs of thermal treatment (180 °C for 8 h, inset is a photograph of treated ASCFs), (b) The almost unchanged solar reflectance and tensile strength of ASCFs after various extreme weathering treatments. (c) The tensile-stress curve after various extreme weathering treatments.

Property	ASCFs (This Work)	TMCP film ⁸	CCF film ⁹	UPC film ¹⁰
Tensile Strength (MPa)	98	41.7	1.1	Unknown
UV Stability (Reflectance Loss)	3.2% (Sunlight exposure about 280 MJ·m ⁻²)	~3.5% (Sunlight exposure about 0.072576 MJ·m ⁻²)	~3.4% (Sunlight exposure about 2.592 MJ·m ⁻²)	1.3% (Sunlight exposure about 1.296 MJ·m ⁻²)

 Table S2 Comparison of mechanical properties and UV resistance of ASCFs with

 other reported cooling materials

References

- 1 P. Zhong, X. Ma, X. Chen, R. Zhong, X. Liu, D. Ma, M. Zhang, Z. Li, Nano Energy, 2015, 16, 99-111.
- 2 B. Liu, E.S. Aydil, J, Am. Chem. Soc., 2009, **131**, 11, 3985-3990.
- 3 B. Li, J.M. Wu, T. T. Guo, M.Z. Tang, W. Wen, Nanoscale, 2014, 6, 3046-3050.
- 4 J. M. Wu, J. Cryst. Growth., 2004, 269, 347-355.
- 5 N. Sutradhar, S.K. Pahari, M. Jayachandran, A.M. Stephan, J.R. Nair, B. Subramanian, H.C. Bajaj, H.M. Mody, A.B. Panda, J. Mater. Chem. A, 2013, 32, 9122.
- 6 J. Wu, H. Xue, J. Am. Chem. Soc., 2009, 92, 2139–2143.
- 7 P. Li, Y. Liu, X. Liu, A. Wang, W. Liu, N. Yi, Q. Kang, M. He, Z. Pei, J. Chen, P. Jiang, W. Li, H. Bao, X. Huang, Adv. Funct. Mater., 2024, 32, 6395-6402.
- 8 P. Zhou, Y. Wang and X. Zhang, Nano Lett., 2024, 24, 6395-6402.
- 9 C. Cai, F. Chen, Z. Wei, C. Ding, Y. Chen, Y. Wang and Y. Fu, Chem. Eng. J., 2023, 476, 146668.
- 10 W. Sun, X. Tan, G. Qi, X. Yang, W. Hu, W. Jin, Z. Guo, J. Liang, M. Wang and X. Lin, Mater. Today Commun., 2024, 41, 110797.