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Sample name
Crystallite size

(from XRD – (111) 

ID/IG ratio

(from 

Rh wt.%

(from ICP-



plane) Raman) OES)

Commercial 5 wt.% 

Rh/C
127.3 nm 1.14 5.2 ± 0.2%

2 wt.% Rh/C 12.8 nm 0.69 2.2 ± 0.2%

5 wt.% Rh/C 14.5 nm 0.75 5.6 ± 0.4%

20 wt.% Rh/C 34.2 nm 0.85 20.7 ± 1.1%

40 wt.% Rh/C 63.5 nm 0.89 40.5 ± 1.8%
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Rh 3d (peak area 

%)

C 1s (peak area 

%)
O 1s (peak area %)

Sample

Rh0 Rh1+
C-C

/C=C
C-O C=O Rh-O C-O Rh-O-H



Pristine 58.9 41.1 46.7 35.7 17.6 1.0 50.7 48.3

After 

Stability
46.8 53.2 48.7 13.2 38.1 - 79.5 20.5

Figure S12. The comparison of commercial and synthesized 5 wt.% Rh/C catalysts in (a) 

nitrate formation rate, and (b) Faradaic efficiency at 1.7 V vs. RHE in N2 and air saturated 0.1 

M KOH solution.

Figure S13: (a-c) STEM images of commercial 5 wt.% Rh/C material at different spots.
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Table S4. Comparison of nitrate and ammonia concentration analysed by different 

quantification techniques.

[NO3
-] (μM) [NH3] (μM)Atmospher

e UV IC Deviation Indophenol ISE Deviation



N2 243.5 261.3 7.3% 83.2 77.8 6.5%

Air 496.0 510.2 2.9% 283.6 260.2 8.2%

Figure S17. (a) N2-TPD results of 5 and 20 wt.% Rh/C samples; (b) O2, (c) N2, and (d) He 

mass spectra of N2 and air (79% N2 + 21% O2)-TPD results of 5 wt.% Rh/C sample.
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Figure S18. (a) XRD pattern, and (b) Raman spectra of 5 wt.% Rh/C catalyst before and after 

N2 and air TPD (25-500 ℃).



Figure S19. Mass spectra recorded during the eNOR using 5 wt.% Rh/C catalyst in (a) air, and 

(b) N2 saturated 0.1 M KOH.

Table S5. eNOR production rate and Faradaic efficiency comparison of various reported 

catalysts.

S. 

No
Catalyst Conditions

Potential 

(V vs. 

RHE)

Nitrate 

formation 

rate (μg h-1 

mgcat
-1)

Faradaic 

efficiency 

%

Referenc

e

1
Ru doped 

TiO2/RuO2

0.1 M 

Na2SO4, N2, 

10 h

2.20 0.1 2.50 1

2 Co3O4

0.1 M 

Na2SO4, N2, 

10 h

1.70 0.09 20.40 2

3 Fe-SnO2

0.05 M 

H2SO4, N2, 2 

h

1.96 0.04 0.84 3

4 Ru-Mn3O4

0.1 M 

Na2SO4, N2, 

2 h

2.00 35.3 6.33 4

5 np-B13C2

0.1 M 

Na2SO4, N2, 

2 h

2.40 165.8 4.90 5



6

Tensile-

Strained 

Palladium 

Porous 

Nanosheets

1.0 M KOH, 

N2

1.75 18.6 1.55 6

7
Rh 

nanoparticles

0.5 M SO4
2-

in 0.1 M 

KOH, N2,

1.90 10.4 2.30 7

8
Fluidized V2O5 

nanorods

0.1 M 

Na2SO4, N2, 

1 h

2.40 1388.0 7.80 8

9
Mo doped 

TiO2

0.1 M 

K2SO4, N2, 

12 h

2.10 5.4±0.24 2.88±0.13 9

10
Ferriporphyrin-

based MOF

0.1 M HCl, 

N2, 2 h
1.60 110.9 70.70 10

11 D-RuO2

0.05 M 

H2SO4, N2, 2 

h

1.44 767.9 0.94 11

12 Mo–(O–C2)4

0.1 M 

Na2SO4, N2, 

2 h

2.35 217.1±13.5 7.8±0.5 12

13 5 wt.% Rh/C
0.1 M KOH, 

N2, 1 h
1.70 106.5 28.20

Present 

work



Table S6. Comparison of ammonia synthesis efficiencies using different electrochemical 

routes.

Route Conditions

NH3 formation 

rate (μg h-1 

mgRu
-1)

Faradaic 

efficiency 

(%)

Direct 

eNRR13

RuO2 catalyst, 0.1 M KOH, N2, -0.15 V 

vs. RHE
8.2 0.3

Direct 

eNO3RR

RuO2 catalyst, 0.1 M KOH + 1000 μM 

NO3
-, -0.0 V vs. RHE in Ar

25.7 11.9

Dual step 

eNOR + 

eNO3RR

Step1 : 5 wt.% Rh/C catalyst, 0.1 M 

KOH, Air, 1.7 V vs. RHE (eNOR); Step 

2 : RuO2 catalyst, -0.0 V vs. RHE 

(eNO3RR) in Ar 

45.1 5.8

Table S7. eNOR production rate and Faradaic efficiency of commercial 5 wt.% Rh/C under 

N2 and air atmosphere.

Rate under N2 

(μg/h/cm2)

Rate under Air 

(μg/h/cm2)
FE % (N2) FE % (Air)Potential 

(V vs. 

RHE)
Commercial In-

house

Commercial In-

house

Commercial In-

house

Commercial In-

house

1.6 14.43 16.46 29.46 41.47 22.55 37.22 35.2 99.58

1.7 12.22 21.28 21.81 46.93 17.31 21.01 26.79 30.91

1.8 10.22 18.86 18.15 48.64 7.21 8.49 10.28 12.03

1.9 6.30 16.42 10.66 39.35 2.37 3.24 5.55 4.17



2.0 5.97 13.75 8.23 30.52 1.02 2.16 2.34 2.26

Proposed Working Model-Continuous NH3 Synthesis by Coupling of eNOR and eNO3RR

In the present study, the electrochemical conversion of N2 to NH3 via the formation of NO3
- 

was demonstrated in two steps, i.e., oxidation of N2 oxidation to NO3
- in the first step via eNOR 

followed by the reduction of the formed NO3
- to NH3 via eNO3RR. To address the inefficiencies 

associated with the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) 

during eNOR and eNO₃RR, a continuous flow cell setup (Figure S20) is designed to operate in 

a cascade configuration. In this system, nitrate generated at the anode is directly utilized at the 

cathode for ammonia production.

The proposed continuous flow electrolyzer integrates anodic nitrogen oxidation (eNOR) and 

cathodic nitrate reduction (eNO₃RR) in a two separated compartments electrochemical cell that 

together can enable sustainable ammonia synthesis. In this design, the anode compartment is 

supplied with a N₂/air-saturated KOH electrolyte from Reservoir 1, where nitrogen is oxidized 

according to the reaction:

N2 + 12OH- → 2NO3
- + 6H2O + 10e- (Eº = 1.32 V vs. RHE) 

The electrochemically generated nitrate ions (NO₃-) in the anolyte are then transferred 

directly into the cathode compartment, where they undergo reduction to ammonia through the 

reaction: 

NO3
- + 6H2O + 8e- → NH3 + 9OH- (Eº = -0.12 V vs. RHE) 

The catholyte, containing the generated ammonia and any unreacted nitrate, will collect in 

Reservoir 2. The electrolyte flow between compartments can be precisely regulated using a 

peristaltic pump, enabling continuous operation under an expected modest applied voltage of 



~2.0 V. This is well-aligned with the thermodynamic requirement (ΔE° ≈ 1.44 V), ensuring 

efficient energy utilization. An optimized anode and cathode size and other cell parameters 

including the pump-controlled flow rate between these compartments (shown in Figure S20)  

should provide a more efficient continuous flow process with higher yield. For example, higher 

ammonia reduction rate and efficiency at higher NO3
- concentration provided from the larger 

anode size. The system can offer key advantages: high nitrogen utilization, minimized energy 

loss through operation near theoretical voltages, and a modular design suitable for commercial 

scale-up. 

Therefore, matching catalyst activity and optimizing reactor design are essential future 

directions to ensure synchronized reaction rates. Overall, this cascade-flow electrolyzer 

represents a promising step forward in green ammonia synthesis, combining electrochemical 

innovation with process integration. With continued advancements in electrocatalyst design, 

reaction engineering, and system scalability, this approach has strong potential for industrial 

translation.

Figure S20. Schematic representation of proposed working model-Electrolysis cell with 

coupled eNOR and eNO3RR.



Calculation of standard Gibbs energy

N2 + 6H2O + 6e- → 2NH3 + 6OH- (1)

N2 + 10OH- → 2HNO3 + 4H2O +10e- (2)

NO3
- + 6H2O + 8e- → NH3 + 9OH- (3)

The standard Gibbs free energy change of a reaction was calculated using the following 

equation:

∆  =∑  of products - ∑  of reactants𝐺 0
𝑓(𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛) 𝑛∆𝐺0

𝑓 𝑛∆𝐺0
𝑓

Standard Gibbs Free Energy of Formation (ΔGo
f)

The standard Gibbs free energies of formation at 25°C (298 K)14 for the species involved:

 N2(g): 0 kJ/mol

 NO3
−

(aq): -110.6 kJ/mol

 NH3(aq): -26.5 kJ/mol

 OH−
(aq): -157.2 kJ/mol

 H2O(l): -237.1 kJ/mol

Calculation of ΔG∘ for Each Reaction

Reaction (1): N2 + 6H2O → 2NH3 + 6OH-

ΔGO
1 = [2×(–26.5)+6×(–157.2)]–[1×(0)+6×(–237.1)] = 426.4 kJ/mol × 0.01036 = 4.42 eV

Reaction (2): N2 + 10OH- → 2HNO3 + 4H2O

ΔG2
∘ = [2×(–111.3)+4×(–237.1)]–[1×(0)+10×(–157.2)] = 401.4 kJ/mol × 0.01036 = 4.15 eV



Reaction (3): NO3
- + 6H2O → NH3 + 9OH-

ΔG3
∘ = [–26.5+9×(–157.2)]–[–111.3+6×(–237.1)] = 92.6 kJ/mol × 0.01036 = 0.96 eV

Summary

 Electrochemical nitrogen reduction: ΔG∘ =  4.42 eV

 Electrochemical nitrate reduction: ΔG∘ = 0.96 eV

 Dual step eNOR+eNO3RR: ΔG∘ = 5.11 eV
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