Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information for:

Achieving High-Capacity Sodium Insertion of Coal-based Hard Carbon Anodes

via Closed-Pore Modification

Figure S1 TG curves of HC and SHC-750

Figure S2 (a)HC, (b)SHC-750 的 TG-FTIR spectrum

Figure S3 The SEM images of HC samples. SEM images of (a) HC-1400, (b) HC-CS-1400, (c) SHC-1400, (d) SHC-CS-0.16, (e) SHC-CS-0.25, (f) SHC-CS-1, (g) SHC-CS-2, (h) SHC-CS-1000, (i) SHC-CS-1200, (j) SHC-CS-1400and (k) SHC-CS-1500 samples.

Figure S4 The fitting results of XRD patterns of (a) SHC-CS-0.25, (b) SHC-CS-1400, (c) HC-CS-1400, (d) SHC-1400, (e) SHC-CS-1, (f) SHC-CS-1200, (g) SHC-CS-1500 and (h) HC-1400 samples.

$$d = \frac{\lambda}{2 \times \sin\left(\theta_{002}\right)}$$

Where λ is the wavelength of the X-rays (0.154178 nm), 20002 is the peak position of (002) peak in the XRD pattern. K_{Cu} = 0.15406 nm.

 $L_a=1.84\lambda/B_{100}\cos\theta_{100}$ $L_c=0.89\lambda/B_{002}\cos\theta_{002}$

Where λ is the wavelength of the X-rays (0.154178 nm), *B*100 and *B*002 are the full width at half maxima of the (100) and (002) peaks, 20100 and 20002 are the corresponding peak positions.

Figure S5 The fitting results of Raman spectra of (a) SHC-CS-0.25, (b) SHC-CS-1400, (c) SHC-CS-1, (d) SHC-1400, (e) HC-CS-1400, (f) SHC-CS-1200, and (g) SHC-CS-1500 samples.

Figure S6 XRD patterns of HC samples with different CS ratios.

Figure S7 Fitted SXAS patterns of HC samples.

The scattered intensity from a medium containing nanopores together with macropores can be represented by the function:

$$I(q) = \frac{A}{q^a} + \frac{Ba_1^4}{(1 + a_1^2 q^2)^2} + D$$

Where q is the wavevector, A and B are proportional to the total surface areas of the large and small pores, and D is a constant background term. the radius of a spherical pore equivalent to Debye's length, is $R = a_1 \sqrt{10}$

Figure S8 Porod fitted SXAS patterns of HC samples.

A power law fit in this region of the scattering curve, $I(q)=A^*q^{-n}$ (q = 3~6 nm⁻¹), is applied to access pore surface and surface roughness. A is the Pollard constant proportional to the inner surface and n is the power exponent. The n is related to the surface roughness of the nanopore. A larger value indicates a smoother surface.

Figure S9 The high-resolution C 1s XPS spectra of (a) SHC-1400, (b) HC-CS-1400; The high-resolution O 1s XPS spectra of (c) SHC-1400 (d) HC-CS-1400.

Figure S10 XPS full spectrum of HC samples: SHC-1400, SHC-CS-1400, HC-CS-1400.

Figure S11 EDS of SHC-CS-1400

Figure S12 The dQ/dV curves of HC samples.

Figure S13 GCD curves of SHC-CS-2, SHC-CS-1, SHC-CS-1400, SHC-CS-0.25, SHC-CS-0.16.

Figure S14 GCD curves of samples treated at different temperatures

Figure S15 GCD curves of HC-CS-1400.

Figure S16 EIS results of HC electrodes at initial open-circuit voltage

Figure S17 Cycling performance of SHC-1400 at 1A g⁻¹ current density

Figure S18 GITT curves of SHC-1400, HC-CS-1400 and SHC-CS-1400

Figure S19 (a) EIS curves for the SHC-1400 and SHC-CS-1400 anode after cycling, HRTEM images of the SEI from (b) SHC-1400 and (c) SHC-CS-1400 anodes

Figure S20 Optical photographs of (a) HC-CS-1400, (b) SHC-1400 and (c) SHC-CS-1400 electrodes immersed in an ethanol solution containing phenolphthalein at different discharge stages

Figure S22 (a) 1st, 2nd, and 5th turn GCD curves of (a) NVP//SHC-CS-1400, (b) NFM//SHC-CS-1400, and (c) NFP//SHC-CS-1400; and (d) rate capability of the full battery

sample	$2\theta_{002}$	d ₀₀₂	R	$2\theta_{100}$	B ₁₀₀	La	B ₀₀₂	L _c	I_D/I_G	A _D /A _G
SHC-1400	23.88	0.372	/	43.47	3.640	4.807	5.728	1.403	1.202	1.791
SHC-CS-0.25	23.98	0.371	2.027	43.34	3.923	4.458	5.909	1.360	1.191	2.091
SHC-CS-1400	23.51	0.378	2.049	43.46	3.944	4.436	6.355	1.264	1.132	1.608
SHC-CS-1	23.77	0.374	2.129	43.79	3.986	4.395	5.853	1.373	1.103	2.055
HC-CS-1400	24.54	0.362	/	43.72	3.827	4.576	6.027	1.335	0.997	1.868
HC-1400	24.09	0.369	/	43.23	3.587	4.874	5.848	1.375	/	/
SHC-CS-1200	23.62	0.376	2.125	43.99	4.081	4.296	6.370	1.261	1.234	1.786
SHC-CS-1500	24.10	0.369	2.042	43.27	3.861	4.529	5.670	1.418	1.169	1.563

 Table S1 Physicochemical properties of HC samples

sample	$SSA_{BET, N2}/m^2$	V _{N2} , <300	True density /g	V _{closed}	D _{closed} pore	n
	g-1	nm/cm ³ g ⁻	mL ⁻¹	pore	/nm	
SHC-1400	1.8102	0.005635	1.916	0.07951	1.489	2.390
SHC-CS-1400	0.8770	0.006036	1.827	0.1050	1.219	2.093
HC-CS-1400	1.849	0.004025	1.736	0.1334	1.193	1.980

 Table S2 Porosity information of HC samples

	Charge-specific Capacity	Discharge-specific Capacity	Initial Coulombic Efficiency	
Samples	$(mA h g^{-1})$	$(mA h g^{-1})$	(%)	
SHC-CS-1000	216.30	370.82	58.33	
SHC-CS-1200	232.05	340.11	68.49	
SHC-CS-1400	316.75	406.38	77.94	
SHC-CS-1500	255.04	302.52	84.31	

 Table S3 Electrochemical data of samples treated at different temperatures

Numb er	Current density (mA/g)	ICE (%)	Specific capacity (mAh/g)	Current density (m A/g)	Specific capacity (mAh/g)	Material	Referen ce
1	0.03	77.8	316	5	203.	Coal	This work
2	0.05	85.3	312.2	1	106.1	Coal	1
3	0.02	79.5	291	0.4	~50	Subbitumino us coal	2
4	0.02	64	200	1	58.2	Coal	3
5	0.02	82.82	300.83	5	140	Coal tar pitch	4
6	0.05	80	278.2	1	207.3	Anthracite coal	5
7	0.037	82.3	308.4	0.6	95	Coal	6
8	0.03	82.9	356	1	100	Lignite coal	7
9	0.02	66	330	5	164	Coal pitch	8
10	0.05	74.2	282	2	130	Anthracite	9
11	0.037	67.5	276.8	0.6	87	Coal tar pitches	10
12	0.02	48.1	284.4	1	61.1	Subbitumino us coal	11
13	0.1	55.87	212.3	5	94	Coal	12
14	0.03	74.8	274.2	2	~50	Bituminous coal	13

Table S4 Comparison of electrochemical performance of SHC-CS-1400 anode with other coal-based anode materials for sodium ion storage reported in previous literatures

Number	name	Current density (A/g)	Specific capacity (mAh/g)	Material	Reference
1	BC/R-HC	5	~135	resin	14
2	C—S/C= S	5	254	polydopamine	15
3	RHC	8 109 bar		bamboo powder	16
4	HC-DB	5	~100	bamboo	17
5	HHC	2	83	polystyrene	18
6	M-1500	2	190	wood	19
7	PO-SC-S	3	125	petroleum residue	20
8	CMAC	0.6	70	polypropylene	21
9	HCMP- CO2	0.8	171	starch	22
10	TDT	5	215	TDT	23
11	РСНС- 10	0.6	103	resin	24
12	SHC- CS-1400	5	203	coal	This work

Table S5 Comparison of the fast-charging performance of SHC-CS-1400 with other HC materials previously reported in the literature for sodium-ion storage

References

- [1] H. Chen, N. Sun, Y. Wang, R. A. Soomro, B. Xu. Energy Storage Mater., 2023, 56, 532-541.
- [2] H. Lu, S. Sun, L. Xiao, J. Qian, X. Ai, H. Yang, A. H. Lu, Y. Cao. ACS Appl. Energy Mater., 2019, 2, 729-735.
- [3] L. Deng, Y. Tang, J. Liu, Y. Zhang, W. Song, Y. Li, L. Liu. Molecules, 2023, 28, 4921.
- [4] Y. Wang, N. Xiao, Z. Wang, H. Li, M. Yu, Y. Tang, M. Hao, C. Liu, Y. Zhou, J. Qiu. Chem. Eng. J., 2018, 342, 52-60.
- [5] L. Quan, G. Yunzhi, W. Huiying. New Journal of Chemistry, 2022, 46, 13575-13581.
- [6] K. Wang, F. Sun, H. Wang, D. Wu, Y. Chao, J. Gao, G. Zhao. Adv. Funct. Mater., 2022, 32, 2203725.
- [7] H. Chen, N. Sun, Q. Zhu, R. A. Soomro, B. Xu. Advanced Science, 2022, 9, 2200023.
- [8] W. Sun, Q. Sun, R. Lu, M.-X. Wen, C. Liu, J.-L. Xu, Y.-X. Wu. J. Alloys Compd., 2021, 889, 161678.

- [9] R. Li, B. Yang, A. Hu, B. Zhou, M. Liu, L. Yang, Z. Yan, Y. Fan, Y. Pan, J. Chen, T. Li,
 K. Li, J. Liu, J. Long. Carbon, 2023, 215, 118489.
- [10] L. Ji, Y. Zhao, L. Cao, Y. Li, C. Ma, X. Qi, Z. Shao. J. Mater. Chem. A, 2023, 11, 26727-26741.
- [11] W. Song, Y. Tang, J. Liu, S. Xiao, Y. Zhang, Y. Gao, C. Yang, L. Liu. J J. Alloys Compd., 2023, 946, 169384.
- [12] R. Liu, Y. Li, C. Wang, N. Xiao, L. He, H. Guo, P. Wan, Y. Zhou, J. Qiu. Fuel Process. Technol., 2018, 178, 35-40.
- [13] Z. Lou, H. Wang, D. Wu, F. Sun, J. Gao, X. Lai, G. Zhao. Fuel, 2022, 310, 122072.
- [14] K. Wang, M. Li, Z. Zhu, W. Ai, H. Wu, B. Wang, P. He, D. Xie, J. Wu, W. Huang. Nano Energy, 2024, 124, 109459.
- [15] H. Feng, Z. Liu, F. Wang, L. Xue, L. Li, C. Ye, C. Zhang, Q. Liu, J. Tan. Adv. Funct. Mater., 2024, 2400020.
- [16] C. Wu, Y. Yang, Y. Zhang, H. Xu, W. Huang, X. He, Q. Chen, H. Dong, L. Li, X. Wu, S. Chou. Angew Chem Int Edit, e202406889.
- [17] Y. Wang, Z. Yi, L. Xie, Y. Mao, W. Ji, Z. Liu, X. Wei, F. Su, C.-M. Chen. Adv. Mater., 2401249.
- [18] Y. Qiu, G. Jiang, Y. Su, X. Zhang, Y. Du, X. Xu, Q. Ye, J. Zhang, M. Ban, F. Xu, H. Wang. Hybrid hard carbon framework derived from polystyrene bearing distinct molecular crosslinking for enhanced sodium storage. Carbon Energy, e479.
- [19] Z. Tang, R. Zhang, H. Wang, S. Zhou, Z. Pan, Y. Huang, D. Sun, Y. Tang, X. Ji, K. Amine, M. Shao. Nat. Commun., 2023, 14, 6024.
- [20] F. Xie, Y. Niu, Q. Zhang, Z. Guo, Z. Hu, Q. Zhou, Z. Xu, Y. Li, R. Yan, Y. Lu, M.-M. Titirici, Y.-S. Hu. Angew Chem Int Edit, 2022, 61, e202116394.
- [21] S. Zhang, N. Sun, X. Li, R. A. Soomro, B. Xu. Energy Storage Mater., 2024, 66, 103183.
- [22] Z. Zheng, S. Hu, W. Yin, J. Peng, R. Wang, J. Jin, B. He, Y. Gong, H. Wang, H. J. Fan. Adv. Energy Mater., 2024, 14, 2303064.
- [23] Y. Yao, M. Pei, C. Su, X. Jin, Y. Qu, Z. Song, W. Jiang, X. Jian, F. Hu. Small, 2401481.
- [24] D. Sun, L. Zhao, P. Sun, K. Zhao, Y. Sun, Q. Zhang, Z. Li, Z. Ma, F. Zheng, Y. Yang,
 C. Lu, C. Peng, C. Xu, Z. Xiao, X. Ma. Adv. Funct. Mater., 2403642.